Genetic Inactivation of the NMDA Receptor NR2A Subunit has Anxiolytic- and Antidepressant-Like Effects in Mice

Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA.
Neuropsychopharmacology (Impact Factor: 7.83). 12/2006; 31(11):2405-14. DOI: 10.1038/sj.npp.1301039
Source: PubMed

ABSTRACT There is growing evidence implicating the glutamate system in the pathophysiology and treatment of mood and anxiety disorders. Glutamatergic neurotransmission is mediated by several receptor subfamilies including multiple NMDA receptor subunits (NR2A-D). However, little is currently understood about the specific roles of NMDA subunits in the mediation of emotional behavior due to a lack of subunit-specific ligands. In the present study, we employed a mouse gene-targeting approach to examine the role of the NR2A subunit in the mediation of anxiety- and depressive-related behaviors. Results showed that NR2A knockout (KO) mice exhibit decreased anxiety-like behavior relative to wild-type littermates (WT) across multiple tests (elevated plus maze, light-dark exploration test, novel open field). NR2A KO mice showed antidepressant-like profiles in the forced swim test and tail suspension test, as compared to WT controls. Locomotor activity in the nonaversive environments of the home cage or a familiar open field were normal in the NR2A KO mice, as were gross neurological and sensory functions, including prepulse inhibition of startle. Taken together, these data demonstrate a selective and robust reduction in anxiety- and depression-related behavior in NMDA receptor NR2A subunit KO mice. Present results support a role for the NR2A subunit in the modulation of emotional behaviors in rodents and provide insight into the role of glutamate in the pathophysiology and treatment of mood and anxiety disorders.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The glutamate system is thought to play an important role in modulating mood and anxiety. Ionotropic NMDA receptors critically influence neuronal circuits regulating emotional behaviour. Their pharmacological blockade triggers fast antidepressant and anxiolytic effects. In line with this concept, ablation of the GluN2A subunit of NMDA receptors induces antidepressant and anxiolytic effects. However, it is not known if absence of the GluN2A-containing NMDA channel or of the GluN2A-mediated intracellular signalling is responsible for these effects. To further investigate the contribution of the GluN2A-containing NMDA receptors in mood disorders we analysed mice lacking the intracellular C-terminus of the GluN2A subunit (GluN2AΔC/ΔC) in tests relevant for anxiety and depression. Interestingly, GluN2AΔC/ΔC mice showed decreased anxiety, but no anti-depressive-like phenotype, indicating a predominant role of the intracellular signalling of the GluN2A subunit in anxiety. These data suggest distinct roles of the GluN2A subunit as whole vs. its intracellular domain in modulating anxiety and depression-like symptoms and reveal differential molecular targets for the therapy of mood and anxiety disorders.
    Behavioural brain research 04/2013; DOI:10.1016/j.bbr.2013.03.036 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal glutamatergic transmission caused by modulation of N-methyl-D-aspartate (NMDA) receptors was demonstrated in animal models chronically exposed to various organic micropollutants. Recent developments in neurobiology have implicated these receptors in the regulation of anxiety. In order to investigate anxiety-related effects of benzo[a]pyrene (B[a]P), Balb/c mice were sub-acutely exposed to B[a]P (0.02-200 mg kg(-1) day(-1), 10 days, i.p.). Their performance was tested in the elevated-plus maze and the hole-board apparatus and the NMDA receptor expression genes (NR1, 2A and 2B subunits) was measured in eight brain regions. Mice treated with 20-200 mg kg(-1) B[a]P showed a disproportionate accumulation of B[a]P and its metabolites (in particular, the toxic 7,8-diol-B[a]P) in the blood and even more in the brain. These mice were less anxious than controls in the hole-board test and the elevated-plus maze. This observation was associated with an overexpression of the NMDA NR1 receptor gene and concomitant decreases of the NR2A and NR2B subunits expression in the hippocampus, the hypothalamus and the cerebellum. In the temporal cortex, a significant dose-related decrease of NR2A was observed whereas the other subunits remained unchanged. In conclusion, a sub-acute exposure to B[a]P (20 and 200 mg kg(-1)) reduced anxiety-related behaviour in adult mice and concomitantly impaired NMDA receptor gene expression in relevant brain regions.
    Chemosphere 05/2008; 73(1 Suppl):S295-302. DOI:10.1016/j.chemosphere.2007.12.037 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A wealth of research identifies the amygdala as a key brain region mediating negative affect, and implicates amygdala dysfunction in the pathophysiology of anxiety disorders. Although there is a strong genetic component to anxiety disorders such as posttraumatic stress disorder (PTSD) there remains debate about whether abnormalities in amygdala function predispose to these disorders. In the present study, groups of C57BL/6 x DBA/2 (B x D) recombinant inbred strains of mice were selected for differences in volume of the basolateral amygdala complex (BLA). Strains with relatively small, medium, or large BLA volumes were compared for Pavlovian fear learning and memory, anxiety-related behaviors, depression-related behavior, and glucocorticoid responses to stress. Strains with relatively small BLA exhibited stronger conditioned fear responses to both auditory tone and contextual stimuli, as compared to groups with larger BLA. The small BLA group also showed significantly greater corticosterone responses to stress than the larger BLA groups. BLA volume did not predict clear differences in measures of anxiety-like behavior or depression-related behavior, other than greater locomotor inhibition to novelty in strains with smaller BLA. Neither striatal, hippocampal nor cerebellar volumes correlated significantly with any behavioral measure. The present data demonstrate a phenotype of enhanced fear conditioning and exaggerated glucocorticoid responses to stress associated with small BLA volume. This profile is reminiscent of the increased fear processing and stress reactivity that is associated with amygdala excitability and reduced amygdala volume in humans carrying loss of function polymorphisms in the serotonin transporter and monoamine oxidase A genes. Our study provides a unique example of how natural variation in amygdala volume associates with specific fear- and stress-related phenotypes in rodents, and further supports the role of amygdala dysfunction in anxiety disorders such as PTSD.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 02/2008; 33(11):2595-604. DOI:10.1038/sj.npp.1301665 · 7.83 Impact Factor


Available from