Article

Calcium plus vitamin D supplementation and the risk of fractures.

Division of Endocrinology, Ohio State University, 485 McCampbell, 1581 Dodd Dr., Columbus, OH 43210, USA.
New England Journal of Medicine (Impact Factor: 54.42). 02/2006; 354(7):669-83. DOI: 10.1056/NEJMoa055218
Source: PubMed

ABSTRACT The efficacy of calcium with vitamin D supplementation for preventing hip and other fractures in healthy postmenopausal women remains equivocal.
We recruited 36,282 postmenopausal women, 50 to 79 years of age, who were already enrolled in a Women's Health Initiative (WHI) clinical trial. We randomly assigned participants to receive 1000 mg of elemental [corrected] calcium as calcium carbonate with 400 IU of vitamin D3 daily or placebo. Fractures were ascertained for an average follow-up period of 7.0 years. Bone density was measured at three WHI centers.
Hip bone density was 1.06 percent higher in the calcium plus vitamin D group than in the placebo group (P<0.01). Intention-to-treat analysis indicated that participants receiving calcium plus vitamin D supplementation had a hazard ratio of 0.88 for hip fracture (95 percent confidence interval, 0.72 to 1.08), 0.90 for clinical spine fracture (0.74 to 1.10), and 0.96 for total fractures (0.91 to 1.02). The risk of renal calculi increased with calcium plus vitamin D (hazard ratio, 1.17; 95 percent confidence interval, 1.02 to 1.34). Censoring data from women when they ceased to adhere to the study medication reduced the hazard ratio for hip fracture to 0.71 (95 percent confidence interval, 0.52 to 0.97). Effects did not vary significantly according to prerandomization serum vitamin D levels.
Among healthy postmenopausal women, calcium with vitamin D supplementation resulted in a small but significant improvement in hip bone density, did not significantly reduce hip fracture, and increased the risk of kidney stones. (ClinicalTrials.gov number, NCT00000611.).

Full-text

Available from: Tamsen Lynn Bassford, Jun 01, 2015
1 Follower
 · 
326 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The association between calcium supplementation and adverse cardiovascular events has recently become a topic of debate due to the publication of two epidemiological studies and one meta-analysis of randomized controlled clinical trials. The reports indicate that there is a significant increase in adverse cardiovascular events following supplementation with calcium; however, a number of experts have raised several issues with these reports such as inconsistencies in attempts to reproduce the findings in other populations and questions concerning the validity of the data due to low compliance, biases in case ascertainment, and/or a lack of adjustment. Additionally, the Auckland Calcium Study, the Women's Health Initiative, and many other studies included in the meta-analysis obtained data from calcium-replete subjects and it is not clear whether the same risk profile would be observed in populations with low calcium intakes. Dietary calcium intake varies widely throughout the world and it is especially low in East Asia, although the risk of cardiovascular events is less prominent in this region. Therefore, clarification is necessary regarding the occurrence of adverse cardiovascular events following calcium supplementation and whether this relationship can be generalized to populations with low calcium intakes. Additionally, the skeletal benefits from calcium supplementation are greater in subjects with low calcium intakes and, therefore, the risk-benefit ratio of calcium supplementation is likely to differ based on the dietary calcium intake and risks of osteoporosis and cardiovascular diseases of various populations. Further studies investigating the risk-benefit profiles of calcium supplementation in various populations are required to develop population-specific guidelines for individuals of different genders, ages, ethnicities, and risk profiles around the world.
    03/2015; 30(1):27-34. DOI:10.3803/EnM.2015.30.1.27
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin D deficiency is increasing worldwide. However, few studies have attempted to examine the vitamin D status of wage workers and the correlation between vitamin D deficiency and working conditions. Hence, we aimed to evaluate the prevalence of vitamin D deficiency and the association between occupational conditions and vitamin D deficiency among Korean wage workers. Wage workers aged 20-65 years from the 5th Korea National Health and Nutrition Examination Survey (KNHANES 2010-2012; n = 5409) were included in our analysis. We measured the prevalence of vitamin D deficiency and identified the correlations with the working conditions of these subjects. The prevalence of vitamin D deficiency in male and female subjects was 69.5% and 83.1%, respectively. Among the male subjects, a significant correlation between vitamin D deficiency and working conditions was observed among shift workers, office workers, and permanent workers. No significant correlation with any type of working conditions was observed among female subjects. The prevalence of vitamin D deficiency among Korean wage workers was very high and was found to correlate significantly with working conditions, likely because of insufficient exposure to sunlight associated with certain types of work. Wage workers require more frequent outdoor activity and nutrition management to maintain sufficient vitamin D level.
    01/2014; 26:28. DOI:10.1186/s40557-014-0028-x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcitriol is documented to cause significant increase in bone mass densitometry counteracting osteoporosis. Promising results of calcitriol supplementation in studies aiming space flight induced osteoporosis is little and the effect of this hormone on biomarkers of bone metabolism is not examined yet in space flight models of osteoporosis in rats. This was an interventional animal study being performed in a 1-month period. We included 21 Sprague Dawley strain rats (>200 gr, >6 week) who were randomly assigned to receive daily supplementation of oral 0.03μgr calcitriol and to be submitted to tail suspension model. Rats were followed for 1 month and were tested for serum osteocalcin (OC), alkaline phosphatase (ALP) and serum calcium at the beginning and the end of the study period. The results were analyzed and compared between groups. Although serum levels of osteocalcin and alkaline phosphatase biomarkers and total serum calcium were not significantly different within and between study groups, their levels were increased in tail suspension model compared to control group. The levels of these biomarkers were lower in those who were submitted to tail suspension model and received calcitriol supplementation compared to those who were only submitted to tail suspension (60.14 ± 11.73 ng/mL vs. 58.29 ± 2.69 ng/mL; p = 0.696 for osteocalcin and 381.86 ± 99.16 mU/mL vs. 362.57 ± 27.41 ng/mL; p = 0.635 for alkaline phosphatase). Supplementation of daily diet with calcitriol in rats under weightlessness conditions may results in lower values for bone metabolic biomarkers of alkaline phosphatase and osteocalcin and serum calcium. This pattern of change in biomarkers of bone formation, may point to the capacity of calcitriol supplementation in preventing cellular process of osteoporosis. Thus calcitriol supplementation could be an available, economic and effective strategy for preventing bone metabolic changes related to weightlessness commonly encountered in space flight. The outcome of this study needs to be further studied in future trying to find more definite results.
    12/2015; 14(1):14. DOI:10.1186/s40200-015-0142-5