Article

Influence of ginsenoside Rh1 and F1 on human cytochrome p450 enzymes.

Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, 457 Zhong-shan Road, Dalian 116023, P. R. China.
Planta Medica (Impact Factor: 2.35). 03/2006; 72(2):126-31. DOI: 10.1055/s-2005-873197
Source: PubMed

ABSTRACT For an oral herbal medicine, the components that can enter the systemic circulation may be the really effective components. In the present study, the effects on the human cytochrome P450 activities of ginsenoside Rb (1) and two hydrolysis products of 20( S)-protopanaxatriol ginsenosides in humans, namely ginsenoside Rh (1) and F (1), which may reach the systemic circulation after oral administration of ginseng extract, were evaluated. Our results showed that Rb (1) exhibited no marked effects on the activities of human cytochrome P450, whereas Rh (1) and F (1) exhibited competitive inhibition of the activity of CYP3A4 with K(i) values of 57.7 +/- 9.6 microM and 67.8 +/- 16.2 microM, respectively. F (1) also exhibited a weaker inhibition of the activity of CYP2D6. Rh (1) exhibited a weak stimulation rather than an inhibition of the activity of CYP2E1. The degradation of ginsenosides in the gastrointestinal tract may play an important role in the ginseng-associated drug-drug interactions, but the effects might be not due to Rh (1) and F (1).

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To ascertain the effects of erlotinib on CYP3A, to investigate the amplitude and kinetics of erlotinib-mediated inhibition of seven major CYP isoforms in human liver microsomes (HLMs) for evaluating the magnitude of erlotinib in drug-drug interaction in vivo. The activities of 7 major CYP isoforms (CYP1A2, CYP2A6, CYP3A, CYP2C9, CYP2D6, CYP2C8, and CYP2E1) were assessed in HLMs using HPLC or UFLC analysis. A two-step incubation method was used to examine the time-dependent inhibition of erlotinib on CYP3A. The activity of CYP2C8 was inhibited with an IC(50) value of 6.17±2.0 μmol/L. Erlotinib stimulated the midazolam 1'-hydroxy reaction, but inhibited the formation of 6β-hydroxytestosterone and oxidized nifedipine. Inhibition of CYP3A by erlotinib was substrate-dependent: the IC(50) values for inhibiting testosterone 6β-hydroxylation and nifedipine metabolism were 31.3±8.0 and 20.5±5.3 μmol/L, respectively. Erlotinib also exhibited the time-dependent inhibition on CYP3A, regardless of the probe substrate used: the value of K(I) and k(inact) were 6.3 μmol/L and 0.035 min(-1) for midazolam; 9.0 μmol/L and 0.045 min(-1) for testosterone; and 10.1 μmol/L and 0.058 min(-1) for nifedipine. The inhibition of CYP3A by erlotinib was substrate-dependent, while its time-dependent inhibition on CYP3A was substrate-independent. The time-dependent inhibition of CYP3A may be a possible cause of drug-drug interaction, suggesting that attention should be paid to the evaluation of erlotinib's safety, especially in the context of combination therapy.
    Acta Pharmacologica Sinica 03/2011; 32(3):399-407. · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bushen Yizhi prescription (BSYZ) is a traditional Chinese compound prescription, which is commonly used in China for treating ShenXu and hypophrenia based on traditional Chinese medicine and Alzheimer's Disease according to modern Chinese medicine. Cnidium monnieri (L.) Cusson fruits (CM) is treated as the main herb of BSYZ, and its main active ingredient Osthole (OST) is considered as one of the major active ingredients of BSYZ. Even though OST plays an important role in the BSYZ its bioavailability is poor. In order to investigate whether the bioavailability of OST was influenced by BSYZ and CM extract, the comparative evaluations on pharmacokinetics of OST after oral administration of pure OST at different doses, CM and BSYZ extract were studied. 30 rats were randomly assigned to five groups and orally administered with pure OST at different doses (15, 75 and 150mg/kg), CM (15mg/kg OST) and BSYZ (15mg/kg OST) extract. At different predetermined time points after administration, the concentrations of OST in rat plasma were determined by using the HPLC-UV method, and main pharmacokinetic parameters were investigated. The results showed that the pharmacokinetic parameters of OST were significantly different (p<0.05) among the groups. The AUC0→t, AUC0→∞ and Cmax of OST were significantly increased after oral administration of BSYZ extract, followed by CM extract, in comparison to pure osthole at different doses. This present study indicated that the bioavailability of pure OST after oral administration was extremely low and it was dramatically enhanced because of the synergistic effect of the traditional Chinese Bushen Yizhi prescription.
    Journal of ethnopharmacology 10/2013; · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: β-Carboline alkaloids are the main chemical constituents of the plant Peganum harmala, while they also could be formed endogenously and found in coffee, alcoholic beverages and tobacco. Considering the fact that the possibility of herb-drug interactions has recently received great attention worldwide, the aim of the current study was to assess the potential for the metabolism-based drug-drug interactions arising from five β-carboline alkaloids (harmine, harmaline, harmalol, harmol and harmane) from P. harmala in vitro. With microsome incubation assays and UPLC/HPLC methods, the inhibitions on human liver CYP3A4 and CYP2D6 enzymes by those β-carboline alkaloids were studied kinetically. Harmine, harmol and harmane exhibited noncompetitive inhibition on the activity of CYP3A4 with K(i) values of 16.76, 5.13 and 1.66 μM, respectively. These β-carboline alkaloids were also found to be both substrates and inhibitors for CYP2D6. Harmaline, harmine and harmol showed typical competitive inhibition on the activity of CYP2D6 with K(i) values of 20.69, 36.48 and 47.11 μM, respectively. The inhibition of the two major CYP enzymes by those β-carboline alkaloids suggested that changes in the pharmacokinetics of co-administered drugs were likely to have occurred. Therefore, caution should be exercised for possible drug interactions of medicinal plants containing those β-carboline alkaloids and CYP substrates.
    Phytotherapy Research 03/2011; 25(11):1671-7. · 2.07 Impact Factor

Full-text

View
123 Downloads
Available from
Jun 3, 2014