Article

Asymmetric localization of Numb:EGFP in dividing neuroepithelial cells during neurulation in Danio rerio

Institut für Entwicklungsbiologie, Universität zu Köln, 50923 Köln, Germany.
Developmental Dynamics (Impact Factor: 2.67). 04/2006; 235(4):934-48. DOI: 10.1002/dvdy.20699
Source: PubMed

ABSTRACT In the neural plate and tube of the zebrafish embryo, cells divide with their mitotic spindles oriented parallel to the plane of the neuroepithelium, whilst in the neural keel and rod, the spindle is oriented perpendicular to it. This change is achieved by a 90 degrees rotation of the mitotic spindle. We cloned zebrafish homologues of the gene for the Drosophila cell fate determinant Numb, and analyzed the localization of EGFP fusion proteins in vivo in dividing neuroepithelial cells during neurulation. Whereas Numb isoform 3 and the related protein Numblike are localized in the cytoplasm, Numb isoform 1 is localized to the cell membrane. Time-lapse analyses showed that Numb 1 is distributed uniformly around the cell cortex in dividing cells during plate and keel stages, but becomes localized at the basolateral membrane of some dividing cells during the transition from neural rod to tube. Using in vitro mutagenesis and Numb:EGFP deletion constructs, we showed that the first 196 amino acids of Numb are sufficient for this localization. Furthermore, we found that an 11-amino acid insertion in the PTB domain is essential for localization to the cortex, whereas amino acids 2-12 mediate the basolateral localization in the neural tube stage.

Download full-text

Full-text

Available from: Nico Scheer, Jan 27, 2015
0 Followers
 · 
81 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative pre-mRNA splicing is a major mechanism by which the proteomic diversity of eukaryotic genomes is amplified. Much akin to neuropsychiatric disorders themselves, alternative splicing events can be influenced by genetic, developmental, and environmental factors. Here, we review the evidence that abnormalities of splicing may contribute to the liability toward these disorders. First, we introduce the phenomenon of alternative splicing and describe the processes involved in its regulation. We then review the evidence for specific splicing abnormalities in a wide range of neuropsychiatric disorders, including psychotic disorders (schizophrenia), affective disorders (bipolar disorder and major depressive disorder), suicide, substance abuse disorders (cocaine abuse and alcoholism), and neurodevelopmental disorders (autism). Next, we provide a theoretical reworking of the concept of "gene-focused" epidemiologic and neurobiologic investigations. Lastly, we suggest potentially fruitful lines for future research that should illuminate the nature, extent, causes, and consequences of alternative splicing abnormalities in neuropsychiatric disorders.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 06/2011; 156B(4):382-92. DOI:10.1002/ajmg.b.31181 · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurulation in zebrafish (Danio rerio) embryos is characterized by oriented cell divisions and the progressive establishment of cellular polarity. Mitoses in the neural plate and neural tube are planar, but in the neural keel/rod stage, the mitotic spindle rotates by 90 degrees, causing cell divisions to occur perpendicular to the plane of the neuroepithelium. The mechanisms and molecules that establish cellular polarity and cause the stereotypic orientation of the mitotic spindle during neurulation are largely unknown. In Caenorhabditis elegans and Drosophila, the PAR/aPKC complex has been shown to be involved in both establishment of cellular polarity and spindle orientation. Here, we show that the conserved N-terminal oligomerization domain (CR1) and the PDZ domains of ASIP/PAR-3:EGFP are involved in its localization to the apical membrane in zebrafish neuroepithelial cells. We further show that the C-terminal part of ASIP/PAR-3 contributes to proper localization and that the apical localization signals in ASIP/PAR-3 prevent the basolateral localization of a Numb:PAR-3 fusion protein. The parallel orientation of the mitotic spindle in the neural tube, however, is only weakly impaired upon overexpression of various ASIP/PAR-3:EGFP constructs.
    Developmental Dynamics 04/2006; 235(4):967-77. DOI:10.1002/dvdy.20715 · 2.67 Impact Factor