Article

Chemo-immunotherapy of colorectal carcinoma: preclinical rationale and clinical experience.

Center of Oncopharmacological Research, Faculty of Medicine, University of Siena, Italy.
Investigational New Drugs (Impact Factor: 2.93). 04/2006; 24(2):99-110. DOI: 10.1007/s10637-006-5932-7
Source: PubMed

ABSTRACT Advanced colorectal cancer is a common disease with an high mortality rate. For four decades, pharmacological treatment of the advanced disease was based on the use of 5-fluorouracil alone or in combination with biomodulators such as folinic acid and intereferon alpha. In the last 5 years, response to therapy has been considerably ameliorated thanks to the discovery of new drugs such as oxaliplatin and CPT-11. These agents, in combination with 5-fluorouracil, according to various schedules of treatment, have reached a significant improvement of palliation, response rate and survival. Immunotherapy is an uprising modality of treatment for human cancer including colorectal carcinoma. Its rationale is based on the knowledge that tumour cells are genetically unstable and produce molecular structures which allow their recognition and destruction by the immune-surveillance system. Therefore, humoral as well as cellular compartments of the immune system can be utilized according to a "passive" strategy (e.g. monoclonal antibody administration and adoptive immunotherapy) or an "active" approach, by using different modalities of vaccine therapy. In this context, monoclonal antibodies (mAbs) and cancer vaccines are being tested for the treatment of advanced colorectal cancer. Due to their genetic instability and extraordinary adaptative potential, tumour cells may acquire resistance to the immune effectors and mAbs exactly as they do for cytotoxic drugs. To improve the results of both immunological and chemical modality of cancer treatment, an increasing number of authors is starting to combine chemo and immunotherapy in the attempt to circumvent the limitations of both strategies. This report tries to review the possible rationale of the chemo-immunotherapy combination, illustrating preliminary results of preclinical and clinical studies.

0 Bookmarks
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effects of anticancer agents on peripheral blood mononuclear cells for the purpose of providing data to support new translational chemoimmunotherapy regimens. Peripheral-blood mononuclear cells were treated with one of four anticancer agents (5-fluorouracil, irinotecan, cisplatin, and gemcitabine) for 2 h, after which cell viability was determined. For assessment of effects of each drug on proliferation and cytokine production, cells were stimulated with phytohemagglutinin for 48 h. As a result, the anticancer agents did not affect cell viability. Cell proliferation was unaffected by 5-fluorouracil and irinotecan but inhibited by cisplatin and gemcitabine. Treatment with gemcitabine enhanced the production of IFN-γ and decreased the number of regulatory T cells. gemcitabine treatment increased IFN-γ production among CD4 T cells but not among CD8 T cells. The results indicated that GEM had immunoregulatory properties that might support immune response against cancer. This finding has implications for designing chemoimmunotherapy strategies.
    Journal of Clinical Biochemistry and Nutrition 01/2013; 52(1):64-71. · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intravesical instillation of bacillus Calmette Guérin (BCG) for the treatment of urothelial carcinoma (UC) of the bladder is based on the BCG-induced immune response, which eradicates and prevents bladder cancer. The results of recent studies have suggested that not only major histocompatibility complex (MHC)-nonrestricted immune cells such as natural killer cells, macrophages, neutrophils, etc., but also MHC-restricted CD8+ T cells play an important role and are one of the main effectors in this therapy. Better understanding of the mechanism of BCG immunotherapy supports the idea that active immunotherapy through its augmented T cell response can have great potential for the treatment of advanced UC. In this review, progress in immunotherapy for UC is discussed based on data from basic, translational and clinical studies. We also review the escape mechanism of cancer cells from the immune system, and down-regulation of MHC class I molecules.
    Cancers. 12/2011; 3(3):3055-72.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intravesical instillation of bacillus Calmette Guérin (BCG) for the treatment of urothelial carcinoma (UC) of the bladder is based on the BCG-induced immune response, which eradicates and prevents bladder cancer. The results of recent studies have suggested that not only major histocompatibility complex (MHC)-nonrestricted immune cells such as natural killer cells, macrophages, neutrophils, etc., but also MHC-restricted CD8 + T cells play an important role and are one of the main effectors in this therapy. Better understanding of the mechanism of BCG immunotherapy supports the idea that active immunotherapy through its augmented T cell response can have great potential for the treatment of advanced UC. In this review, progress in immunotherapy for UC is discussed based on data from basic, translational and clinical studies. We also review the escape mechanism of cancer cells from the immune system, and down-regulation of MHC class I molecules.
    Cancers. 01/2011; 33390:3055-3072.