Interfacial rheology of blood proteins adorbed to the aqueous-buffer/air Interface

Integrative Biosciences Graduate Program, Huck Institutes for Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
Biomaterials (Impact Factor: 8.56). 07/2006; 27(18):3404-12. DOI: 10.1016/j.biomaterials.2006.02.005
Source: PubMed


Concentration-dependent, interfacial-shear rheology and interfacial tension of albumin, IgG, fibrinogen, and IgM adsorbed to the aqueous-buffer/air surface is interpreted in terms of a single viscoelastic layer for albumin but multi-layers for the larger proteins. Two-dimensional (2D) storage and loss moduli G(') and G(''), respectively, rise and fall as a function of bulk-solution concentration, signaling formation of a network of interacting protein molecules at the surface with viscoelastic properties. Over the same concentration range, interfacial spreading pressure Pi(LV) identical with gamma(lv)(o)-gamma(lv) rises to a sustained maximum Pi(LV)(max). Mixing as little as 25 w/v% albumin into IgG at fixed total protein concentration substantially reduces peak G('), strongly suggesting that albumin acts as rheological modifier by intercalating with adsorbed IgG molecules. By contrast to purified-protein solutions, serially diluted human blood serum shows no resolvable concentration-dependent G(')and G('').

1 Follower
7 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The solution-depletion method of measuring protein adsorption is implemented using SDS gel electrophoresis as a separation and quantification tool. Experimental method is demonstrated using lysozyme (15kDa), alpha-amylase (51kDa), human serum albumin (66kDa), prothrombin (72kDa), immunoglobulin G (160kDa), and fibrinogen (341kDa) adsorption from aqueous-buffer solution to hydrophobic octyl-sepharose and silanized-glass particles. Interpretive mass-balance equations are derived from a model premised on the idea that protein reversibly partitions from bulk solution into a three-dimensional (3D) interphase volume separating the physical-adsorbent surface from bulk solution. Theory both anticipated and accommodated adsorption of all proteins to the two test surfaces, suggesting that the underlying model is descriptive of the essential physical chemistry of protein adsorption. Application of mass balance equations to experimental data quantify partition coefficients P, interphase volumes V(I), and the number of hypothetical layers M occupied by protein adsorbed within V(I). Partition coefficients quantify protein-adsorption avidity through the equilibrium ratio of interphase and bulk-solution-phase w/v (mg/mL) concentrations W(I) and W(B), respectively, such that P identical withW(I)/W(B). Proteins are found to be weak biosurfactants with 45<P<520 and commensurately low apparent free-energy-of-adsorption -6RT<(DeltaG(adsphobic)(0)=-RTlnP)<-4RT. These measurements corroborate independent estimates obtained from interfacial energetics of adsorption (tensiometry) and are in agreement with thermochemical measurements for related proteins by hydrophobic-interaction chromatography. Proteins with molecular weight MW<100kDa occupy a single layer at surface saturation whereas the larger proteins IgG and fibrinogen required two layers.
    Biomaterials 12/2006; 27(34):5780-93. DOI:10.1016/j.biomaterials.2006.07.038 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A Vroman-like exchange of different proteins adsorbing from a concentrated mixture to the same hydrophobic adsorbent surface is shown to arise naturally from the selective pressure imposed by a fixed interfacial-concentration capacity (w/v, mg/mL) for which protein molecules compete. A size (molecular weight, MW) discrimination results because fewer large proteins are required to accumulate an interfacial w/v concentration equal to smaller proteins. Hence, the surface region becomes dominated by smaller proteins on a number-or-mole basis through a purely physical process that is essentially unrelated to protein biochemistry. Under certain conditions, this size discrimination can be amplified by the natural variation in protein-adsorption avidity (quantified by partition coefficients P) because smaller proteins (MW<50 kDa) have been found to exhibit characteristically higher P than larger proteins (MW<50 kDa). The standard depletion method is implemented to measure protein-adsorption competition between two different test proteins (i and j) for the same hydrophobic octyl sepharose adsorbent particles. SDS-gel electrophoresis is used as a multiplexing, separation-and-quantification tool for this purpose. Identical results obtained using sequential and simultaneous competition of human immunoglobulin G (IgG, protein j) with human serum albumin (HSA, protein i) demonstrates that HSA was not irreversibly adsorbed to octyl sepharose over a broad range of competing solution concentrations. A clearly observed exchange of HSA for IgG or fibrinogen (Fib) shows that adsorption of different proteins (i competing with j) to the same hydrophobic surface is coupled whereas adsorption among identical proteins (i or j adsorbing from purified solution) is not coupled. Interpretive theory shows that this adsorption coupling is due to competition for the fixed surface capacity. Theory is extended to hypothetical ternary mixtures using a computational experiment that illustrates the profound impact size-discrimination has on adsorption from complex mixtures such as blood.
    Biomaterials 01/2007; 28(3):405-22. DOI:10.1016/j.biomaterials.2006.09.006 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The solution-depletion method of measuring human serum albumin (HSA) adsorption to surface-modified glass-particle adsorbents with incrementally increasing hydrophilicity is implemented using SDS gel electrophoresis as a separation and quantification tool. It is shown that adsorbent capacity for albumin measured in interfacial-concentration units (mg/mL) decreases monotonically with increasing surface energy (water wettability) to detection limits near an adsorbent-particle water adhesion tension tau(0)=30 dyne/cm (nominal water contact angle theta=65( composite function)) and that albumin does not adsorb to (concentrate within the surface region of) more hydrophilic adsorbents. These adsorbed-mass measurements corroborate predictions based on interfacial energetics and are consistent with AFM measurement of protein-surface adhesion. Interpretive mass-balance equations are derived from a model premised on the idea that protein reversibly partitions from bulk solution into a three-dimensional (3D) interphase volume separating the physical adsorbent surface from bulk solution. Theory is shown to both anticipate and accommodate experimental results for all test adsorbents, suggesting that the underlying model is descriptive of the essential physical chemistry of albumin adsorption to surfaces spanning the full range of observable water wetting. In particular, application of theory to experimental data shows that the free-energy cost of dehydrating the surface region by protein displacement upon adsorption increases with increasing adsorbent hydrophilicity in a manner that controls ultimate capacity for protein. It is concluded that a simple, three-component free-energy rule adequately describes protein adsorption from aqueous solution, at least for materials bearing varying surface concentrations of anionic (not cationic) functional groups. IMPACT STATEMENT: This work yields detailed insights into the physical chemistry of protein adsorption by elucidating relationships among adsorbent surface energy, capacity to adsorb the protein human serum albumin, and the energy required to displace vicinal water from the interface.
    Biomaterials 01/2007; 27(34):5801-12. DOI:10.1016/j.biomaterials.2006.08.005 · 8.56 Impact Factor
Show more