Article

A motor neuron disease–associated mutation in p150Glued perturbs dynactin function and induces protein aggregation

Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The Journal of Cell Biology (Impact Factor: 9.69). 03/2006; 172(5):733-45. DOI: 10.1083/jcb.200511068
Source: PubMed

ABSTRACT The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. Dynactin is ubiquitously expressed in eukaryotes, but a G59S mutation in the p150Glued subunit of dynactin results in the specific degeneration of motor neurons. This mutation in the conserved cytoskeleton-associated protein, glycine-rich (CAP-Gly) domain lowers the affinity of p150Glued for microtubules and EB1. Cell lines from patients are morphologically normal but show delayed recovery after nocodazole treatment, consistent with a subtle disruption of dynein/dynactin function. The G59S mutation disrupts the folding of the CAP-Gly domain, resulting in aggregation of the p150Glued protein both in vitro and in vivo, which is accompanied by an increase in cell death in a motor neuron cell line. Overexpression of the chaperone Hsp70 inhibits aggregate formation and prevents cell death. These data support a model in which a point mutation in p150Glued causes both loss of dynein/dynactin function and gain of toxic function, which together lead to motor neuron cell death.

Download full-text

Full-text

Available from: Jennifer R Levy, Jul 01, 2015
1 Follower
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p150(Glued) is the major subunit of dynactin, a complex that functions with dynein in minus-end-directed microtubule transport. Mutations within the p150(Glued) CAP-Gly microtubule-binding domain cause neurodegenerative diseases through an unclear mechanism. A p150(Glued) motor neuron degenerative disease-associated mutation introduced into the Drosophila Glued locus generates a partial loss-of-function allele (Gl(G38S)) with impaired neurotransmitter release and adult-onset locomotor dysfunction. Disruption of the p150(Glued) CAP-Gly domain in neurons causes a specific disruption of vesicle trafficking at terminal boutons (TBs), the distal-most ends of synapses. Gl(G38S) larvae accumulate endosomes along with dynein and kinesin motor proteins within swollen TBs, and genetic analyses show that kinesin and p150(Glued) function cooperatively at TBs to coordinate transport. Therefore, the p150(Glued) CAP-Gly domain regulates dynein-mediated retrograde transport at synaptic termini, and this function of dynactin is disrupted by a mutation that causes motor neuron disease.
    Neuron 04/2012; 74(2):344-60. DOI:10.1016/j.neuron.2012.02.026 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The microtubule plus end is a crucial site for the regulation of microtubule dynamics and microtubule association with different cellular organelles and macromolecular complexes. Several evolutionarily conserved groups of proteins form comet-like accumulations at the growing microtubule plus ends. These proteins belong to functionally diverse and structurally unrelated families: they include motors, nonmotor proteins, microtubule polymerases, and depolymerases as well as regulatory and adaptor proteins. Here, we provide an overview of microtubule plus end binding proteins, describe what is known about the mechanisms of their association with growing microtubule tips, and discuss their functional properties in relation to microtubule plus end accumulation.
    International review of cell and molecular biology 01/2010; 285:1-74. DOI:10.1016/B978-0-12-381047-2.00001-3 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proper transport and distribution of mitochondria in axons and at synapses are critical for the normal physiology of neurons. Mitochondria in axons display distinct motility patterns and undergo saltatory and bidirectional movement, where mitochondria frequently stop, start moving again, and change direction. While approximately one-third of axonal mitochondria are mobile in mature neurons, a large proportion remains stationary. Their net movement is significantly influenced by recruitment to stationary or motile states. In response to the diverse physiological states of axons and synapses, the mitochondrial balance between motile and stationary phases is a possible target of regulation by intracellular signals and synaptic activity. Efficient control of mitochondrial retention (docking) at particular stations, where energy production and calcium homeostasis capacity are highly demanded, is likely essential for neuronal development and function. In this review, we introduce the molecular and cellular mechanisms underlying the complex mobility patterns of axonal mitochondria and discuss how motor adaptor complexes and docking machinery contribute to mitochondrial transport and distribution in axons and at synapses. In addition, we briefly discuss the physiological evidence how axonal mitochondrial mobility impacts synaptic function.
    Experimental Neurology 04/2009; 218(2):257-67. DOI:10.1016/j.expneurol.2009.03.024 · 4.62 Impact Factor