Article

Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity

Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
Journal of Agricultural and Food Chemistry (Impact Factor: 3.11). 04/2006; 54(5):1599-603. DOI: 10.1021/jf052857r
Source: PubMed

ABSTRACT The health benefits associated with tea consumption have resulted in the wide inclusion of green tea extracts in botanical dietary supplements, which are widely consumed as adjuvants for complementary and alternative medicines. Tea contains polyphenols such as catechins or flavan-3-ols including epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate (EGCG), as well as the alkaloid, caffeine. Polyphenols are antioxidants, and EGCG, due to its high levels, is widely accepted as the major antioxidant in green tea. Therefore, commercial green tea dietary supplements (GTDS) may be chemically standardized to EGCG levels and/or biologically standardized to antioxidant capacity. However, label claims on GTDS may not correlate with actual phytochemical content or antioxidant capacity nor provide information about the presence and levels of caffeine. In the current study, 19 commonly available GTDS were evaluated for catechin and caffeine content (using high-performance liquid chromatography) and for antioxidative activity [using trolox equivalent antioxidant capacity (TEAC) and oxygen radical antioxidant capacity (ORAC) assays]. Product labels varied in the information provided and were inconsistent with actual phytochemical contents. Only seven of the GTDS studied made label claims of caffeine content, 11 made claims of EGCG content, and five specified total polyphenol content. Caffeine, EGCG, and total polyphenol contents in the GTDS varied from 28 to 183, 12-143, and 14-36% tablet or capsule weight, respectively. TEAC and ORAC values for GTDS ranged from 187 to 15340 and from 166 to 13690 mumol Trolox/g for tablet or capsule, respectively. The antioxidant activities for GTDS determined by TEAC and ORAC were well-correlated with each other and with the total polyphenol content. Reliable labeling information and standardized manufacturing practices, based on both chemical standardization and biological assays, are recommended for the quality control of botanical dietary supplements.

Download full-text

Full-text

Available from: David Heber, Dec 18, 2014
4 Followers
 · 
369 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensitive to the massive diffusion of purported metabolic and cardiovascular positive effects of green tea and catechin-containing extracts, many consumers of cardiovascular drugs assume these products as a "natural" and presumably innocuous adjunctive way to increase their overall health. However, green tea may interfere with the oral bioavailability or activity of cardiovascular drugs by various mechanisms, potentially leading to reduced drug efficacy or increased drug toxicity. Available data about interactions between green tea and cardiovascular drugs in humans, updated in this review, are limited so far to warfarin, simvastatin and nadolol, and suggest that the average effects are mild to modest. Nevertheless, in cases of unexpected drug response or intolerance, it is warranted to consider a possible green tea-drug interaction, especially in people who assume large volumes of green tea and/or catechin-enriched products with the conviction that "more-is-better"
    Current Pharmaceutical Design 10/2014; 21(9). DOI:10.2174/1381612820666141013135045 · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal protein folding and self-assembly causes over 30 cureless human diseases for which no disease-modifying therapies are available. The common side to all these diseases is formation of aberrant toxic protein oligomers and amyloid fibrils. Both types of assemblies are drug targets, yet each presents major challenges to drug design, discovery, and development. In this review, we focus on two small molecules that inhibit formation of toxic amyloid protein assemblies - the green-tea derivative (-)-epigallocatechin-3-gallate (EGCG), which was identified through a combination of epidemiologic data and a compound library screen, and the molecular tweezer CLR01, whose inhibitory activity was discovered in our group based on rational reasoning, and subsequently confirmed experimentally. Both compounds act in a manner that is not specific to one particular protein and thus are useful against a multitude of amyloidogenic proteins, yet they act via distinct putative mechanisms. CLR01 disrupts protein aggregation through specific binding to lysine residues, whereas the mechanisms underlying the activity of EGCG are only recently beginning to unveil. We discuss current in vitro and, where available, in vivo literature related to EGCG and CLR01's effects on amyloid beta-protein, alpha-synuclein, transthyretin, islet amyloid polypeptide, and calcitonin. We also describe the toxicity, pharmacokinetics, and mechanism of action of each compound.
    12/2013; 4(4-4):385-409. DOI:10.2478/s13380-013-0137-y
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invasion and metastasis are the major causes of cancer-related death. Pharmacological or therapeutic interventions such as chemoprevention of the progression stages of neoplastic development could result in substantial reduction in the incidence of cancer mortality. (-)-Epigallocatechin-3-gallate (EGCG), a promising chemopreventive agent, has attracted extensive interest for cancer therapy utilizing its antioxidant, anti- proliferative and inhibitory effects on angiogenesis and tumor cell invasion. In this study, we assessed the influence of EGCG on the proliferative potential of HeLa cells by cell viability assay and authenticated the results by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Further we analyzed the anti-invasive properties of EGCG by wound migration assay and gene expression of MMP-9 and TIMP-1 in HeLa cells. Our results indicated that EGCG induced growth inhibition of HeLa cells in a dose- and time- dependent manner. It was observed that cell death mediated by EGCG was through apoptosis. Interestingly, EGCG effectively inhibited invasion and migration of HeLa cells and modulated the expression of related genes (MMP-9 and TIMP-1) . These results indicate that EGCG may effectively suppress promotion and progression stages of cervical cancer development.
    Asian Pacific journal of cancer prevention: APJCP 09/2012; 13(9):4815-22. DOI:10.7314/APJCP.2012.13.9.4815 · 1.50 Impact Factor