Article

Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion.

Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
Spine (Impact Factor: 2.45). 04/2006; 31(5):542-7. DOI: 10.1097/01.brs.0000201424.27509.72
Source: PubMed

ABSTRACT A retrospective review of patients who underwent an anterior cervical fusion using recombinant human bone morphogenetic protein (rhBMP)-2 with an absorbable collagen sponge (INFUSE; Medtronic Sofamor Danek, Minneapolis, MN).
To ascertain the complication rate after the use of high-dose INFUSE in anterior cervical fusions.
The rhBMP-2 has been primarily investigated in lumbar spine fusions, where it has significantly enhanced the fusion rate and decreased the length of surgery, blood loss, and hospital stay.
We present 151 patients who underwent either an anterior cervical discectomy and fusion (n = 138) or anterior cervical vertebrectomy and fusion (n = 13) augmented with high-dose INFUSE between July 2003 and March 2004. The rhBMP-2 (up to 2.1 mg/level) was used in the anterior cervical discectomy and fusions.
A total of 35 (23.2%) patients had complications after the use of high-dose INFUSE in the cervical spine. There were 15 patients diagnosed with a hematoma, including 11 on postoperative day 4 or 5, of whom 8 were surgically evacuated. Thirteen individuals had either a prolonged hospital stay (> 48 hours) or hospital readmission because of swallowing/breathing difficulties or dramatic swelling without hematoma.
A significant rate of complications resulted after the use of a high dose of INFUSE in anterior cervical fusions. We hypothesize that in the cervical area, the putative inflammatory effect that contributes to the effectiveness of INFUSE in inducing fusion may spread to adjacent critical structures and lead to increased postoperative morbidity. A thorough investigation is warranted to determine the optimal dose of rhBMP-2 that will promote cervical fusion and minimize complications.

Full-text

Available from: Lisa B E Shields, May 05, 2015
1 Follower
 · 
279 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone Morphogenetic Protein 2 (BMP-2) plays a key role in skeletal development, repair and regeneration. Our previous studies indicate that recombinant human BMP-2 (rhBMP-2) can stimulate osteogenic differentiation and promote angiogenesis through the up-regulation of Vascular Endothelial Growth Factor (VEGF), while the underlying mechanism of the BMP-2 effect on human cells is not well understood. To gain a better understanding of BMP-2-induced angiogenesis, we further characterized the effect of rhBMP-2 on VEGF expression in human adipose-derived stromal cells (hASCs) by RT-PCR and ELISA. VEGF expression was induced by rhBMP-2 in a dose- and time-dependent manner, with the highest induction observed using 100 ng/ml of rhBMP-2 at 18-24 h post stimulation. In addition, Western blot analyses revealed that the phosphorylation of p38 was closely related to the expression of VEGF, and blocking the p38MAPK pathway with the specific inhibitor sb203580 resulted in the decreased VEGF expression. Our data suggest that p38 activation may be required for rhBMP-2-induced VEGF expression and angiogenesis. Information derived from this study may shed light on understanding the effect of rhBMP-2 in the angiogenesis of hASCs, which is important for designing new strategies to increase the angiogenesis of tissue engineering bone.
    International Journal of Clinical and Experimental Medicine 01/2015; 8(1):222-30. · 1.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The clinical utilization of recombinant human bone morphogenetic protein 2 (rhBMP-2) delivery systems for bone regeneration has been associated with very severe side effects, which are due to the non-controlled and non-targeted delivery of the growth factor from its collagen sponge carrier post-implantation which necessitates supraphysiological doses. However, rhBMP-2 presents outstanding regenerative properties and thus there is an unmet need for a biocompatible, fully resorbable delivery system for the controlled, targeted release of this protein. With this in mind, the purpose of this work was to design and develop a delivery system to release low rhBMP-2 doses from a collagen–hydroxyapatite (CHA) scaffold which had previously been optimized for bone regeneration and recently demonstrated significant healing in vivo. In order to enhance the potential for clinical translation by minimizing the design complexity and thus upscaling and regulatory hurdles of the device, a microparticle and chemical functionalization-free approach was chosen to fulfill this aim. RhBMP-2 was combined with a CHA scaffold using a lyophilization fabrication process to produce a highly porous CHA scaffold supporting the controlled release of the protein over the course of 21 days while maintaining in vitro bioactivity as demonstrated by enhanced alkaline phosphatase activity and calcium production by preosteoblasts cultured on the scaffold. When implanted in vivo, these materials demonstrated increased levels of healing of critical-sized rat calvarial defects 8 weeks post-implantation compared to an empty defect and unloaded CHA scaffold, without eliciting bone anomalies or adjacent bone resorption. These results demonstrate that it is possible to achieve bone regeneration using 30 times less rhBMP-2 than INFUSE®, the current clinical gold standard; thus, this work represents the first step of the development of a rhBMP-2 eluting material with immense clinical potential.
    Journal of Controlled Release 03/2015; 207. DOI:10.1016/j.jconrel.2015.03.028 · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation induced by multinuclear cells, such as osteoclasts and foreign body giant cells, which mimics a physiologically similar release mode, to achieve sustained ectopic or orthotopic bone formation. Therefore, biomimetic calcium phosphate coatings are considered to be a promising delivery vehicle for osteogenic agents. In this review, we present an overview of biomimetic calcium phosphate coatings including their preparation techniques, physico-chemical properties, potential as drug carrier, and their pre-clinical application both in ectopic and orthotopic animal models. We briefly review some features of hydroxyapatite coatings and their clinical applications to gain insight into the clinical applications of biomimetic calcium phosphate coatings in the near future.
    The Open Biomedical Engineering Journal 02/2015; 9(Suppl 1-M4):56-64. DOI:10.2174/1874120701509010056