Mapping the distribution of conformational information throughout a protein sequence.

Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 180, (1876) Bernal, Buenos Aires, Argentina.
Journal of Molecular Biology (Impact Factor: 3.96). 05/2006; 358(1):280-8. DOI: 10.1016/j.jmb.2006.01.095
Source: PubMed

ABSTRACT The three-dimensional structure of protein is encoded in the sequence, but many amino acid residues carry no essential conformational information, and the identity of those that are structure-determining is elusive. By circular permutation and terminal deletion, we produced and purified 25 Bacillus licheniformis beta-lactamase (ESBL) variants that lack 5-21 contiguous residues each, and collectively have 82% of the sequence and 92% of the non-local atom-atom contacts eliminated. Circular dichroism and size-exclusion chromatography showed that most of the variants form conformationally heterogeneous mixtures, but by measuring catalytic constants, we found that all populate, to a greater or lesser extent, conformations with the essential features of the native fold. This suggests that no segment of the ESBL sequence is essential to the structure as a whole, which is congruent with the notion that local information and modular organization can impart most of the tertiary fold specificity and cooperativity.

Download full-text


Available from: Javier Santos, Jul 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Production of recombinant proteins is a process intensively used in the research laboratory. In addition, the main biotechnology market products are recombinant proteins and monoclonal antibodies. The biological (and clinical) properties of the protein product strongly depend on the conformation of the polypeptide. Therefore, assessment of the correct conformation of the produced protein is crucial. There is no single method to assess every aspect of protein structure or function. Depending on the protein, the methods of choice vary. There are general methods to evaluate not only mass and primary sequence of the protein, but also higher-order structure. This review outlines the principal techniques for determining the conformation of a protein from structural (biophysical methods) to functional (in vitro binding assays) analyses.
    Biotechnology Journal 06/2011; 6(6):731-41. DOI:10.1002/biot.201100107 · 3.71 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B. licheniformis exo-small beta-lactamase (ESBL) has two nonsequential domains and a complex architecture. We replaced ESBL serine residues 126 and 265 with cysteine to probe the conformation of buried regions in each domain. Spectroscopic, hydrodynamic, and chemical methods revealed that the mutations do not alter the native fold but distinctly change stability (S-126C > wild-type > S-126/265C > S-265C ESBL) and the features of partially folded states. The observed wild-type ESBL equilibrium intermediate has decreased fluorescence but full secondary structure. S-126C ESBL intermediate has the fluorescence of the unfolded state, no thiol reactivity, and partial secondary structure. S-265C and S-126/265C ESBL populate intermediate states unfolded by fluorescence and thiol reactivity but with full secondary structure. Mass analysis of S-126/265C ESBL in the partially folded state proved that both thiol groups become exposed simultaneously. None of the intermediates is compatible with sequential domain unfolding. Molecular dynamics simulation suggests that the stabilizing effect of the S-126C substitution is due to optimization of van der Waals interactions and packing. On the other hand, destabilization induced by the S-265C mutation results from alteration of the hydrogen-bond network. The results illustrate the large impact that seemingly conservative serine-to-cysteine changes can have on the energy landscape of proteins.
    Biophysical Journal 09/2007; 93(5):1707-18. DOI:10.1529/biophysj.106.103804 · 3.83 Impact Factor