Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK.

Department of Biological Sciences and Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
Nature (Impact Factor: 38.6). 04/2006; 440(7080):83-6. DOI: 10.1038/nature04324
Source: PubMed

ABSTRACT Foot-and-mouth disease (FMD) in the UK provides an ideal opportunity to explore optimal control measures for an infectious disease. The presence of fine-scale spatio-temporal data for the 2001 epidemic has allowed the development of epidemiological models that are more accurate than those generally created for other epidemics and provide the opportunity to explore a variety of alternative control measures. Vaccination was not used during the 2001 epidemic; however, the recent DEFRA (Department for Environment Food and Rural Affairs) contingency plan details how reactive vaccination would be considered in future. Here, using the data from the 2001 epidemic, we consider the optimal deployment of limited vaccination capacity in a complex heterogeneous environment. We use a model of FMD spread to investigate the optimal deployment of reactive ring vaccination of cattle constrained by logistical resources. The predicted optimal ring size is highly dependent upon logistical constraints but is more robust to epidemiological parameters. Other ways of targeting reactive vaccination can significantly reduce the epidemic size; in particular, ignoring the order in which infections are reported and vaccinating those farms closest to any previously reported case can substantially reduce the epidemic. This strategy has the advantage that it rapidly targets new foci of infection and that determining an optimal ring size is unnecessary.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Foot-and-mouth disease (FMD) occurred in five provinces and 24 counties as part of the FMD incursion into Mongolia during 2010. The first detection occurred on 21 April 2010 (confirmed 26 April 2010) with the last detection occurring approximately 8 months later on 13 December 2010. The number of livestock detected in the spring phase of the outbreak was 323 cattle and in the summer phase was 13 485 sheep, 6748 cattle, 5692 goats and 10 camels (total livestock summer phase = 25 935; for spring and summer phases combined = 26 258). Infection of livestock was confirmed by PCR for each affected county but not necessarily for every outbreak cluster involving more than one herder. It is likely that the summer phase of the outbreak was a continuation of the spring event. In the summer phase, the spatio-temporal pattern of spread suggested an extension of infection from the main cluster in the Sukhbaatar county. There was also a number of long-distance clusters established. The relative importance of spread by three potential pathways of gazelle, livestock, animal product and fomite movements has not been determined and will require further study. The estimated dissemination ratio (EDR) did not provide evidence of high rate of transmission of infection between herders; however, the data are limited by the quality of surveillance and the method of calculation which used the date of detection rather than the date of infection.
    Transboundary and Emerging Diseases 01/2014; · 2.10 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Comparison of control strategies against animal infectious diseases allows determining optimal strategies according to their epidemiological and/or economic impacts. However, in real life, the choice of a control strategy does not always obey a pure economic or epidemiological rationality. The objective of this study was to analyze the choice of a foot and mouth disease (FMD) control strategy as a decision-making process in which the decision-maker is influenced by several stakeholders (government, agro-food industries, public opinion). For each of these, an indicator of epizootic impact was quantified to compare seven control strategies. We then determined how, in France, the optimal control strategy varied according to the relative weights of stakeholders and to the perception of risk by the decision-maker (risk-neutral/risk-averse). When the scope of decision was national, whatever their perception of risk and the stakeholders' weights, decision-makers chose a strategy based on vaccination. This consensus concealed marked differences between regions, which were connected with the regional breeding characteristics. Vaccination-based strategies were predominant in regions with dense cattle and swine populations, and in regions with a dense population of small ruminants, combined with a medium density of cattle and swine. These differences between regions suggested that control strategies could be usefully adapted to local breeding conditions. We then analyzed the feasibility of adaptive decision-making processes depending on the date and place where the epizootic starts, or on the evolution of the epizootic over time. The initial conditions always explained at least half of the variance of impacts, the remaining variance being attributed to the variability of epizootics evolution. However, the first weeks of this evolution explained a large part of the impacts variability. Although the predictive value of the initial conditions for determining the optimal strategy was weak, adaptive strategies changing dynamically according to the evolution of the epizootic appeared feasible.
    PLoS ONE 01/2014; 9(1):e86323. · 3.53 Impact Factor

Full-text (3 Sources)

Available from
May 20, 2014