Microarray analysis of differential gene expression in the liver of lean and fat chickens.

Unité Mixte de Recherche Génétique Animale, INRA-Agrocampus Rennes, IFR140-GFAS, 65 rue de Saint-Brieuc, CS 84215, 35042 Rennes cedex, France.
Gene (Impact Factor: 2.08). 06/2006; 372:162-70. DOI: 10.1016/j.gene.2005.12.028
Source: PubMed

ABSTRACT Excessive adiposity has become a major drawback in meat-type chicken production. However, few studies were conducted to analyze the liver expression of genes involved in pathways and mechanisms leading to adiposity. A previous study performed by differential display on RNAs extracted from chicken livers from lean and fat lines allowed us to isolate cDNA products of genes with putative differential expression. In this study, a cDNA microarray resource was developed from these products together with cDNAs from genes involved in or related to lipid metabolism. This resource was used to analyze gene expression in the liver from lean and fat chickens. Some genes were found with a difference in expression between lean and fat animals and/or correlated to adipose tissue weight. Cytochrome P450 2C45, thought to play a role in biotransformation of steroids and poly-unsaturated fatty acids, was more expressed in lean chickens whereas fatty acid synthase, stearoyl-CoA desaturase, sterol response element binding factor 1 and hepatocyte nuclear factor 4, respectively involved in lipogenesis and its regulation, were more expressed in fat chickens. These results indicate that mechanisms involved in the expression and regulation of lipogenic genes could play a key role in fatness ontogenesis in chickens from lean and fat lines.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Poultry products are an important source of Salmonella enterica. An effective way to reduce food poisoning due to Salmonella would be to breed chickens more resistant to infection. Unfortunately host responses to Salmonella are complex with many factors involved. To learn more about responses to Salmonella in young chickens of 2 wk old, a cDNA Microarray containing 13,319 probes was performed to compare gene expression profiles between two chicken groups under control and Salmonella infected conditions. Newly hatched chickens were orally infected with S. enterica serovar Enteritidis. Since the intestine is one of the important barriers the bacteria encounter after oral inoculation, intestine gene expression was investigated at 2 wk old. There were 588 differentially expressed genes detected, of which 276 were known genes, and of the total number 266 were up-regulated and 322 were down-regulated. Differences in gene expression between the two chicken groups were found in control as well as Salmonella infected conditions indicating a difference in the intestine development between the two chicken groups which might be linked to the difference in Salmonella susceptibility. The differential expressions of 4 genes were confirmed by quantitative real-time PCR and the results indicated that the expression changes of these genes were generally consistent with the results of GeneChips. The findings in this study have lead to the identification of novel genes and possible cellular pathways, which are host dependent.
    Asian Australasian Journal of Animal Sciences 02/2012; 25(2):278-85. DOI:10.5713/ajas.2011.11174 · 0.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intramuscular fat (IMF) plays an important role in meat quality. However, the molecular mechanisms underlying IMF deposition in skeletal muscle have not been addressed for the sex-linked dwarf (SLD) chicken. In this study, potential candidate genes and signaling pathways related to IMF deposition in chicken leg muscle tissue were characterized using gene expression profiling of both 7-week-old SLD and normal chickens. A total of 173 differentially expressed genes (DEGs) were identified between the two breeds. Subsequently, 6 DEGs related to lipid metabolism or muscle development were verified in each breed based on gene ontology (GO) analysis. In addition, KEGG pathway analysis of DEGs indicated that some of them (GHR, SOCS3, and IGF2BP3) participate in adipocytokine and insulin signaling pathways. To investigate the role of the above signaling pathways in IMF deposition, the gene expression of pathway factors and other downstream genes were measured by using qRT-PCR and Western blot analyses. Collectively, the results identified potential candidate genes related to IMF deposition and suggested that IMF deposition in skeletal muscle of SLD chicken is regulated partially by pathways of adipocytokine and insulin and other downstream signaling pathways (TGF- β /SMAD3 and Wnt/catenin- β pathway).
    03/2014; 2014:724274. DOI:10.1155/2014/724274
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adipose tissue is not only a tissue where energy is stored but is also involved in regulating several body functions such as appetite and energy expenditure via its endocrine activity. Moreover, it thereby modulates complex processes like reproduction, inflammation and immune response. The products secreted from adipose tissue comprise hormones and cytokines that are collectively termed as adipocytokines or "adipokines"; the discovery and characterization of new proteins secreted by adipose tissue is still ongoing and their number is thus still increasing. Adipokines act in both endocrine manner as well as locally as autocrine or paracrine effectors. Proteomics has emerged as a valuable technique to characterize both cellular and secreted proteomes from adipose tissues, including those of main cellular fractions, i.e. the adipocytes or the stromal vascular fraction containing mainly adipocyte precursors and immune cells. The increased scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus of the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal structure for the mammary gland and on its role in participating in and regulating of energy metabolism and other functions. Moreover, as pig has recently become an important model organism the study of human diseases, the knowledge of adipose tissue metabolism in pig is relevant for the study of human obesity and metabolic disorders. We herein provide a general overview of adipose tissue functions, and of its importance in farm animals. This review will summarize recent achievements in farm animal adipose tissue proteomics, mainly in cattle and pigs, but also in poultry, i.e. chicken and in farmed fish. Proteomics advancement in adipocyte cell lines, have also been included.
    Current Protein and Peptide Science 02/2014; 15(2). DOI:10.2174/1389203715666140221123105 · 2.33 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014