Microarray analysis of differential gene expression in the liver of lean and fat chickens.

Unité Mixte de Recherche Génétique Animale, INRA-Agrocampus Rennes, IFR140-GFAS, 65 rue de Saint-Brieuc, CS 84215, 35042 Rennes cedex, France.
Gene (Impact Factor: 2.2). 06/2006; 372:162-70. DOI: 10.1016/j.gene.2005.12.028
Source: PubMed

ABSTRACT Excessive adiposity has become a major drawback in meat-type chicken production. However, few studies were conducted to analyze the liver expression of genes involved in pathways and mechanisms leading to adiposity. A previous study performed by differential display on RNAs extracted from chicken livers from lean and fat lines allowed us to isolate cDNA products of genes with putative differential expression. In this study, a cDNA microarray resource was developed from these products together with cDNAs from genes involved in or related to lipid metabolism. This resource was used to analyze gene expression in the liver from lean and fat chickens. Some genes were found with a difference in expression between lean and fat animals and/or correlated to adipose tissue weight. Cytochrome P450 2C45, thought to play a role in biotransformation of steroids and poly-unsaturated fatty acids, was more expressed in lean chickens whereas fatty acid synthase, stearoyl-CoA desaturase, sterol response element binding factor 1 and hepatocyte nuclear factor 4, respectively involved in lipogenesis and its regulation, were more expressed in fat chickens. These results indicate that mechanisms involved in the expression and regulation of lipogenic genes could play a key role in fatness ontogenesis in chickens from lean and fat lines.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fat deposits in chickens contribute significantly to meat quality attributes such as juiciness, flavor, taste and other organoleptic properties. The quantity of fat deposited increases faster and earlier in the fast-growing chickens than in slow-growing chickens. In this study, Affymetrix Genechip(R) Chicken Genome Arrays 32773 transcripts were used to compare gene expression profiles in liver and hypothalamus tissues of fast-growing and slow-growing chicken at 8 wk of age. Real-time RT-PCR was used to validate the differential expression of genes selected from the microarray analysis. The mRNA expression of the genes was further examined in fat tissues. The association of single nucleotide polymorphisms of four lipid-related genes with fat traits was examined in a F2 resource population. Four hundred genes in the liver tissues and 220 genes hypothalamus tissues, respectively, were identified to be differentially expressed in fast-growing chickens and slow-growing chickens. Expression levels of genes for lipid metabolism (SULT1B1, ACSBG2, PNPLA3, LPL, AOAH) carbohydrate metabolism (MGAT4B, XYLB, GBE1, PGM1, HKDC1)cholesttrol biosynthesis (FDPS, LSS, HMGCR, NSDHL, DHCR24, IDI1, ME1) HSD17B7 and other reaction or processes (CYP1A4, CYP1A1, AKR1B1, CYP4V2, DDO) were higher in the fast-growing White Recessive Rock chickens than in the slow-growing Xinghua chickens. On the other hand, expression levels of genes associated with multicellular organism development, immune response, DNA integration, melanin biosynthetic process, muscle organ development and oxidation-reduction (FRZB, DMD, FUT8, CYP2C45, DHRSX, and CYP2C18) and with glycol-metabolism (GCNT2, ELOVL 6, and FASN), were higher in the XH chickens than in the fast-growing chickens. RT-PCR validated high expression levels of nine out of 12 genes in fat tissues. The G1257069A and T1247123C of the ACSBG2 gene were significantly associated with abdominal fat weight. The G4928024A of the FASN gene were significantly associated with fat bandwidth, and abdominal fat percentage. The C4930169T of the FASN gene was associated with abdominal fat weight while the A59539099G of the ELOVL 6 was significantly associated with subcutaneous fat. The A8378815G of the DDT was associated with fat band width. The differences in fat deposition were reflected with differential gene expressions in fast and slow growing chickens.
    Journal of animal science and biotechnology. 11/2013; 4(1):43.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Of all the mammals of the world, the yak lives at the highest altitude area of more than 3000 m. Comparison between yak and cattle of the low-altitude areas will be informative in studying animal adaptation to higher altitudes. To investigate the molecular mechanism involved in meat quality differences between the two Chinese special varieties Qinghai yak and Qinchuan cattle, 12 chemical-physical characteristics of the longissimus dorsi muscle related to meat quality were compared at the age of 36 months, and the gene expression profiles were constructed by utilizing the bovine genome array. Significant analysis of microarrays was used to identify the differentially expressed genes. Gene ontology and pathway analysis were performed by a free Web-based Molecular Annotation System 2.0. The results reveal ~11 000 probes representing about 10 000 genes that were detected in both the Qinghai yak and Qinchuan cattle. A total of 1922 genes were shown to be differentially expressed, 633 probes were upregulated and 1259 probes were downregulated in the muscle tissue of Qinghai yak that were mainly involved in ubiquitin-mediated proteolysis, muscle growth regulation, glucose metabolism, immune response and so on. Quantitative real-time PCR (qRT-PCR) was performed to validate some differentially expressed genes identified by microarray. Further analysis implied that animals living at a high altitude may supply energy by more active protein catabolism and glycolysis compared with those living in the plain areas. Our results establish the groundwork for further studies on yaks' meat quality and will be beneficial in improving the yaks' breeding by molecular biotechnology.
    animal 11/2013; · 1.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intramuscular fat (IMF) plays an important role in meat quality. However, the molecular mechanisms underlying IMF deposition in skeletal muscle have not been addressed for the sex-linked dwarf (SLD) chicken. In this study, potential candidate genes and signaling pathways related to IMF deposition in chicken leg muscle tissue were characterized using gene expression profiling of both 7-week-old SLD and normal chickens. A total of 173 differentially expressed genes (DEGs) were identified between the two breeds. Subsequently, 6 DEGs related to lipid metabolism or muscle development were verified in each breed based on gene ontology (GO) analysis. In addition, KEGG pathway analysis of DEGs indicated that some of them (GHR, SOCS3, and IGF2BP3) participate in adipocytokine and insulin signaling pathways. To investigate the role of the above signaling pathways in IMF deposition, the gene expression of pathway factors and other downstream genes were measured by using qRT-PCR and Western blot analyses. Collectively, the results identified potential candidate genes related to IMF deposition and suggested that IMF deposition in skeletal muscle of SLD chicken is regulated partially by pathways of adipocytokine and insulin and other downstream signaling pathways (TGF- β /SMAD3 and Wnt/catenin- β pathway).
    BioMed research international. 01/2014; 2014:724274.

Full-text (2 Sources)

Available from
May 19, 2014