Article

Comparison of the efficacy of inactivated combination and modified-live virus vaccines against challenge infection with neuropathogenic equine herpesvirus type 1 (EHV-1).

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
Vaccine (Impact Factor: 3.49). 05/2006; 24(17):3636-45. DOI: 10.1016/j.vaccine.2006.01.062
Source: PubMed

ABSTRACT Equine herpesvirus type 1 (EHV-1) is a ubiquitous alphaherpesvirus of horses which causes rhinopneumonitis, abortion and myeloencephalopathy. To test the efficacy of commercial vaccines in protection against neurological EHV-1 challenge, groups of five horses were immunized with modified-live virus or an inactivated vaccine, or received placebo. Horses were challenged by aerosol with a recent virus isolate obtained from a case of paralytic EHV-1. The duration of fever decreased significantly in the modified-live virus vaccine group. Three animals in each of the inactivate and control groups showed alterations in neurological status. When compared to the inactivated vaccine, the modified-live virus vaccine induced significantly lower virus-neutralizing antibodies over the course of the study. The modified-live virus vaccine resulted in low EHV-1-specific IgG(T)/IgGa and IgG(T)/IgGb ratios, suggesting a bias towards a cytotoxic immune response. Virus shedding from the nasopharynx was almost undetectable in the modified-live virus group, and was significantly lower when compared to that in the other groups. Normalized lymphocyte viral genome copies were similar for the three groups, although animals vaccinated with the modified-live virus vaccine were qPCR-positive on fewer days when compared to those of the other groups. Based on data from neurological signs, rectal temperatures, virus isolation from nasal swabs and immune response specificity, we concluded that protection induced by the modified-live virus vaccine is superior to that induced by the inactivated combination vaccine.

0 Bookmarks
 · 
59 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The equine herpesviruses type 1 (EHV-1) and 4 (EHV-4) are ubiquitous pathogens that affect horse populations on all continents. Despite widespread vaccination, EHV-1 and EHV-4 infections remain a permanent risk. While the two viruses share a high degree of genetic and antigenic similarity, they differ significantly in host range and pathogenicity. Compared to EHV-4, which mainly infects horses and causes respiratory disease, EHV-1 has a broader host range and can result in respiratory disease, abortions, neonatal death, and equine herpesvirusmyeloencephalopathy (EHM). Recent studies have elucidated a number of mechanisms that may, at least partly, explain the differential pathogenic potential of the two viruses. While both EHV-1 and EHV-4 can escape host immune responses and establish latent infection, there are differences with respect to virus entry and their ability to interfere with the innate immune response. Understanding the virus' repertoire of immunomodulatory mechanisms may lead the way to develop more efficient vaccines.
    Veterinary Microbiology 07/2013; · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The equine herpesvirus type 1 (EHV-1) open reading frame 34 (ORF34) is predicted to encode a polypeptide of 161 amino acids. We show that an ORF34 deletion mutant exhibited a significant growth defect in equine peripheral blood mononuclear cells taken directly ex vivo during early but not late times of infection. ORF34 protein (pORF34)-specific antibodies specifically reacted with a 28-kDa early polypeptide present in the cytosol of infected cells. From 10 h post infection, multiple smaller pORF34-specific protein moieties were detected indicating that expression of a late viral gene product(s) caused pORF34 degradation. Proteasome inhibitors blocked pORF34 degradation as did treatment of infected cells with a ubiquitin-activating enzyme (E1) inhibitor. Finally, kinetic studies showed that pORF34 is modified by addition of multiple copies of ubiquitin. Taken together, our findings suggest that the ubiquitin proteasome pathway is required for pORF34 degradation that may modulate protein activity in the course of infection.
    Virology. 01/2014; s 460–461:11–22.
  • Source
    American Journal of Epidemiology and Infectious Diseases. 01/2013; 1(3):20-23.