Article

Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations.

Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Biochemical and Biophysical Research Communications (Impact Factor: 2.41). 05/2006; 342(4):1130-6. DOI: 10.1016/j.bbrc.2006.02.078
Source: PubMed

ABSTRACT Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations.

0 Bookmarks
 · 
34 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the human mitochondrial genome are known to cause an array of diverse disorders, most of which are maternally inherited, and all of which are associated with defects in oxidative energy metabolism. It is now emerging that somatic mutations in mitochondrial DNA (mtDNA) are also linked to other complex traits, including neurodegenerative diseases, ageing and cancer. Here we discuss insights into the roles of mtDNA mutations in a wide variety of diseases, highlighting the interesting genetic characteristics of the mitochondrial genome and challenges in studying its contribution to pathogenesis.
    Nature Reviews Genetics 12/2012; 13(12):878-90. · 41.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hearing loss (HL) is a common disorder with mitochondrial dysfunction as one of the major causes leading to deafness. Mitochondrial dysfunction may be caused by either mutations in nuclear genes leading to defective nuclear-encoded proteins or mutations in mitochondrial genes leading to defective mitochondrial-encoded products. The specific nuclear genes involved in HL can be classified into two categories depending on whether mitochondrial gene mutations co-exist (modifier genes) or not (deafness-causing genes). TFB1M, MTO1, GTPBP3, and TRMU are modifier genes. A mutation in any of these modifier genes may lead to a deafness phenotype when accompanied by the mitochondrial gene mutation. OPA1, TIMM8A, SMAC/DIABLO, MPV17, PDSS1, BCS1L, SUCLA2, C10ORF2, COX10, PLOG1and RRM2B are deafness-causing genes. A mutation in any of these deafness-causing genes will directly induce variable phenotypic HL.
    Gene 03/2013; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Combined respiratory chain defect is a common feature in mitochondrial liver disease during early infancy. Mitochondrial DNA depletions, induced by mutations of the nuclear genes POLG, DGUOK, and MPV17, are the major causes of these combined deficiencies. More recently, mutations in TRMU gene encoding the mitochondrial tRNA-specific 2-thiouridylase were found in infantile hepatopathy related to mitochondrial translation defect. It is characterized by a combined defect of respiratory chain complexes without mitochondrial DNA depletion.We report here clinical, biochemical, and genetic findings from three unrelated children presenting with hepatopathy associated with hyperlactatemia and respiratory chain defect due to bi-allelic mutations in TRMU gene. Two patients recovered spontaneously in a few months, whereas the other one died of acute liver failure. Spontaneous remission is a rare feature in mitochondrial liver diseases, and early identification of TRMU mutations could impact on clinical management. Our results extend the small number of TRMU mutations reported in mitochondrial liver disorders and allowed accumulating data for genotype-phenotype correlation.
    JIMD reports. 04/2013;