Article

Repression of mutagenesis by Rad51D-mediated homologous recombination

Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA.
Nucleic Acids Research (Impact Factor: 9.11). 02/2006; 34(5):1358-68. DOI: 10.1093/nar/gkl020
Source: PubMed

ABSTRACT Homologous recombinational repair (HRR) restores chromatid breaks arising during DNA replication and prevents chromosomal rearrangements that can occur from the misrepair of such breaks. In vertebrates, five Rad51 paralogs are identified that contribute in a nonessential but critical manner to HRR proficiency. We constructed and characterized a knockout of the paralog Rad51D in widely studied CHO cells. The rad51d mutant (clone 51D1) displays sensitivity to a diverse spectrum of induced DNA damage including gamma-rays, ultraviolet (UV)-C radiation, and methyl methanesulfonate (MMS), indicating the broad relevance of HRR to genotoxicity. Spontaneous chromatid breaks/gaps and isochromatid breaks are elevated 3- to 12-fold, but the chromosome number distribution remains unchanged. Most importantly, 51D1 cells exhibit a 12-fold-increased rate of hprt mutation, as well as 4- to 10-fold increased rates of gene amplification at the dhfr and CAD loci, respectively. Xrcc3 irs1SF cells from the same parental CHO line show similarly elevated mutagenesis at these three loci. Collectively, these results confirm the a priori expectation that HRR acts in an error-free manner to repress three classes of genetic alterations (chromosomal aberrations, loss of gene function and increased gene expression), all of which are associated with carcinogenesis.

Download full-text

Full-text

Available from: John Michael Hinz, Jul 04, 2015
0 Followers
 · 
160 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CEN-209 (SN30000) is a second-generation benzotriazine di-N-oxide currently in advanced preclinical development as a hypoxia-activated prodrug (HAP). Herein we describe the DNA repair-, hypoxia- and one-electron reductase-dependence of CEN-209 cytotoxicity. We deployed mutant CHO cell lines to generate DNA repair profiles for CEN-209, and compared the profiles with those for other HAPs. Hypoxic selectivity of CEN-209 was significantly greater than PR-104A and the nitro-chloromethylbenzindoline (nCBI/SN29428) and comparable to tirapazamine and TH-302. CEN-209 was selective for homologous recombination (HR) repair-deficient cells (Rad51d⁻/⁻), but less so than nitrogen mustard prodrugs TH-302 and PR-104A. Further, DNA repair profiles for CEN-209 differed under oxic and hypoxic conditions, with oxic cytotoxicity more dependent on HR. This feature was conserved across all three members of the benzotriazine di-N-oxide class examined (tirapazamine, CEN-209 and CEN-309/SN29751). Enhancing one-electron reduction of CEN-209 by forced expression of a soluble form of NADPH:cytochrome P450 oxidoreductase (sPOR) increased CEN-209 cytotoxicity more markedly under oxic than hypoxic conditions. Comparison of oxygen consumption, H₂O₂ production and metabolism of CEN-209 to the corresponding 1-oxide and nor-oxide reduced metabolites suggested that enhanced oxic cytotoxicity in cells with high one-electron reductase activity is due to futile redox cycling. This study supports the hypothesis that both oxic and hypoxic cell killing by CEN-209 is mechanistically analogous to tirapazamine and is dependent on oxidative DNA damage repaired via multiple pathways. However, HAPs that generate DNA interstrand cross-links, such as TH-302 and PR-104, may be more suitable than benzotriazine di-N-oxides for exploiting reported HR repair defects in hypoxic tumour cells.
    Biochemical pharmacology 12/2011; 83(5):574-85. DOI:10.1016/j.bcp.2011.12.005 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA-methylating agents of the S(N)2 type target DNA mostly at ring nitrogens, producing predominantly N-methylated purines. These adducts are repaired by base excision repair (BER). Since defects in BER cause accumulation of DNA single-strand breaks (SSBs) and sensitize cells to the agents, it has been suggested that some of the lesions on their own or BER intermediates (e.g. apurinic sites) are cytotoxic, blocking DNA replication and inducing replication-mediated DNA double-strand breaks (DSBs). Here, we addressed the question of whether homologous recombination (HR) or non-homologous end-joining (NHEJ) or both are involved in the repair of DSBs formed following treatment of cells with methyl methanesulfonate (MMS). We show that HR defective cells (BRCA2, Rad51D and XRCC3 mutants) are dramatically more sensitive to MMS-induced DNA damage as measured by colony formation, apoptosis and chromosomal aberrations, while NHEJ defective cells (Ku80 and DNA-PK(CS) mutants) are only mildly sensitive to the killing, apoptosis-inducing and clastogenic effects of MMS. On the other hand, the HR mutants were almost completely refractory to the formation of sister chromatid exchanges (SCEs) following MMS treatment. Since DSBs are expected to be formed specifically in the S-phase, we assessed the formation and kinetics of repair of DSBs by γH2AX quantification in a cell cycle specific manner. In the cytotoxic dose range of MMS a significant amount of γH2AX foci was induced in S, but not G1- and G2-phase cells. A major fraction of γH2AX foci colocalized with 53BP1 and phosphorylated ATM, indicating they are representative of DSBs. DSB formation following MMS treatment was also demonstrated by the neutral comet assay. Repair kinetics revealed that HR mutants exhibit a significant delay in DSB repair, while NHEJ mutants completed S-phase specific DSB repair with a kinetic similar to the wildtype. Moreover, DNA-PKcs inhibition in HR mutants did not affect the repair kinetics after MMS treatment. Overall, the data indicate that agents producing N-alkylpurines in the DNA induce replication-dependent DSBs. Further, they show that HR is the major pathway of protection of cells against DSB formation, killing and genotoxicity following S(N)2-alkylating agents.
    DNA repair 10/2010; 9(10):1050-63. DOI:10.1016/j.dnarep.2010.07.005 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to evaluate the relative role of two major DNA double strand break repair pathways, i.e., non-homologous end joining (NHEJ) and homologous recombination repair (HRR), CHO mutants deficient in these two pathways and the parental cells (AA8) were X-irradiated with various doses. The cells were harvested at different times after irradiation, representing G2, S and G1 phase at the time of irradiation, The mutant cell lines used were V33 (NHEJ deficient), Irs1SF, 51-D1 (HRR deficient). In addition to parental cell line (AA8), a revertant of V33, namely V33-155 was employed. Both types of mutant cells responded with increased frequencies of chromosomal aberrations at all recovery times in comparison to the parental and revertant cells. Mutant cells deficient in NHEJ were more sensitive in all cell stages in comparison to HRR deficient mutant cells, indicating NHEJ is the major repair pathway for DSB repair through out the cell cycle. Both chromosome and chromatid types of exchange aberrations were observed following G1 irradiation (16 and 24 h recovery). Interestingly, configurations involving both chromosome (dicentrics) and chromatid exchanges were encountered in G1 irradiated V33 cells. This may indicate that unrepaired DSBs accumulate in G1 in these mutant cells and carried over to S phase, where they are repaired by HRR or other pathways such as B-NHEJ (back up NHEJ), which appear to be highly error prone. Both NHEJ and HRR, which share some of the same proteins in their pathways, are involved in the repair of DSBs leading to chromosomal aberrations, but with a major role of NHEJ in all stages of cell cycle.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 06/2008; 642(1-2):80-5. DOI:10.1016/j.mrfmmm.2008.05.002 · 4.44 Impact Factor