Article

The effect of 5-hydroxtryptamine on the regulation of megakaryocytopoiesis.

Department of Hematology, First Affiliated Hospital, Shantou University Medical College, Shanton, 515041, People's Republic of China.
Hematology (Impact Factor: 1.39). 03/2006; 11(1):53-6. DOI: 10.1080/10245330500322370
Source: PubMed

ABSTRACT 5-Hydroxtryptamine (5-HT, serotonin) has been recognized not only as a neurotransmitter and vasoactive agent, but also as a growth factor. 5-HT mainly binds to 5-HT2 receptors or 5-HT1 receptors on cell surfaces to stimulate cell proliferation through Ras or MAPK (mitogen-activated protein kinase) pathways in many cell types. It has been reported that 5-HT stimulates megakaryocytopoiesis via 5-HT receptors (5-HTR). The possible mechanism by which 5-HT regulates the proliferation and differentiation of megakaryocytes (MK) is discussed in this review article. In early stages of megakaryocytopoiesis, 5-HT may bind to 5-HT2B receptors on MK to promote their proliferation and differentiation. In the late stages, 5-HT may be involved in platelet release by inducing nitric oxide (NO) synthesis via 5-HT2A receptors. 5-HT can also antagonize the apoptotic effect induced by thrombospondin-1 (TSP-1) which is a platelet alpha-granule protein and has synergic effects with platelet-derived growth factor (PDGF) to enhance MK proliferation. Therefore, 5-HT is likely to be an important substance in the feedback regulation of thrombopoiesis.

0 Bookmarks
 · 
61 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since its identification, 75 years ago, the monoamine serotonin (5-HT) has attracted considerable attention toward its role as a neurotransmitter in the central nervous system. Yet, increasing evidence, from a growing number of research groups, substantiates the fact that 5-HT regulates important nonneuronal functions. Peripheral 5-HT, synthesized by the enzyme tryptophan hydroxyase (Tph) in intestinal cells, was assumed to be distributed throughout the entire body by blood platelets and to behave as a pleiotropic hormone. A decade ago, generation of a mouse model devoid of peripheral 5-HT lead to the discovery of a second isoform of the enzyme Tph and also suggested that 5-HT might act as a local regulator in various organs. The objective of this review is to highlight the newly discovered functions played by the monoamine using the Tph1 KO murine model and to outline current findings that led to the discovery of complete serotonergic systems in unexpected organs. Within an organ, both the presence of local Tph enzymatic activity and serotonergic components are of particular importance as they support the view that 5-HT meets the criteria to be qualified as a monoamine with a paracrine/autocrine function.
    ACS Chemical Neuroscience 01/2013; 4(1):64-71. · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Besides thrombopoietin several additional factors (i.e neurotransmitters and receptors) are known to be involved in the regulation of megakaryopoiesis at different stages. Recently, we identified functional α7 nicotinic acetylcholine receptors (nAChRα7) on platelets and megakaryocytic precursors. In platelets nAChRα7 form functional Ca(2+) channels and are involved in fibrinogen receptor activation and aggregation. Here, we investigated the impact of nAChRα7 on the differentiation of the human megakaryoblastic cell line MEG-01. In vitro differentiation of MEG-01 cells was induced by the phorbol ester TPA for 5 days in the absence or presence of nicotine or the nAChRα7-selective antagonist methyllycaconitine (MLA), and this was monitored by the expression of the megakaryocytic antigens CD41 and CD61. In the presence of the cholinergic drugs (nicotine or MLA) CD41 and CD61 expression was significantly reduced, both at RNA and protein level. We postulate that the nAChRα7 receptor is involved in megakaryopoietic signal transduction and gene regulation. This could affect the generation of platelets in vivo and contribute to the development of novel therapeutic drugs that regulate platelet formation.
    Platelets 03/2011; 22(5):390-5. · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial dysfunction and vascular remodeling. Recently, bone marrow progenitor cells have been localized to PAH lungs, raising the question of their role in disease progression. Independently, serotonin (5-HT) and its receptors have been identified as contributors to the PAH pathogenesis. We hypothesized that 1 of these receptors, 5-HT(2B), is involved in bone marrow stem cell mobilization that participates in the development of PAH and pulmonary vascular remodeling. A first study revealed expression of 5-HT(2B) receptors by circulating c-kit(+) precursor cells, whereas mice lacking 5-HT(2B) receptors showed alterations in platelets and monocyte-macrophage numbers, and in myeloid lineages of bone marrow. Strikingly, mice with restricted expression of 5-HT(2B) receptors in bone marrow cells developed hypoxia or monocrotaline-induced increase in pulmonary pressure and vascular remodeling, whereas restricted elimination of 5-HT(2B) receptors on bone marrow cells confers a complete resistance. Moreover, ex vivo culture of human CD34(+) or mice c-kit(+) progenitor cells in the presence of a 5-HT(2B) receptor antagonist resulted in altered myeloid differentiation potential. Thus, we demonstrate that activation of 5-HT(2B) receptors on bone marrow lineage progenitors is critical for the development of PAH.
    Blood 12/2011; 119(7):1772-80. · 9.78 Impact Factor