Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1.

Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
Molecular Biology of the Cell (Impact Factor: 4.55). 06/2006; 17(5):2331-45. DOI: 10.1091/mbc.E05-06-0498
Source: PubMed

ABSTRACT In interphase cells, the adenomatous polyposis coli (APC) protein accumulates on a small subset of microtubules (MTs) in cell protrusions, suggesting that APC may regulate the dynamics of these MTs. We comicroinjected a nonperturbing fluorescently labeled monoclonal antibody and labeled tubulin to simultaneously visualize dynamics of endogenous APC and MTs in living cells. MTs decorated with APC spent more time growing and had a decreased catastrophe frequency compared with non-APC-decorated MTs. Endogenous APC associated briefly with shortening MTs. To determine the relationship between APC and its binding partner EB1, we monitored EB1-green fluorescent protein and endogenous APC concomitantly in living cells. Only a small fraction of EB1 colocalized with APC at any one time. APC-deficient cells and EB1 small interfering RNA showed that EB1 and APC localized at MT ends independently. Depletion of EB1 did not change the growth-stabilizing effects of APC on MT plus ends. In addition, APC remained bound to MTs stabilized with low nocodazole, whereas EB1 did not. Thus, we demonstrate that the association of endogenous APC with MT ends correlates directly with their increased growth stability, that this can occur independently of its association with EB1, and that APC and EB1 can associate with MT plus ends by distinct mechanisms.


Available from: Inke S Näthke, Jun 11, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules in interphase mammalian cells usually form a radial array with minus-ends concentrated in the central region and plus-ends placed at the periphery. This is accepted as correct, that two factors determinate the radial organization of microtubules - the centrosome, which nucleate and anchor the microtubules minus-ends, and the interaction of microtubules with cortical dynein, which positions centrosome in the cell center. However, it looks as if there are additional factors, affecting the radial structure of microtubule system. We show here that in aged Vero cytoplasts (17 h after enucleation) microtubule system lost radial organization and became chaotic. To clear up the reasons of that, we studied centrosome activity, its position in the cytoplasts and microtubule dynamics. We found that centrosome in aged cytoplasts was still active and placed in the central region of the cytoplasm, while after total disruption of the microtubules it was displaced from the center. Microtubules in aged cytoplasts were not stabilized, but they lost their ability to stop to grow near cell cortex and continued to grow reaching it. Aged cytoplast lamellae was partially depleted with dynactin though Golgi remained compact indicating dynein activity. We conclude that microtubule stoppage at cell cortex is mediated by some (protein) factors, and these factors influence radial structure of microtubule system. It seems that the key role in centrosome positioning is played by dynein complexes anchored everywhere in the cytoplasm rather than anchored in cell cortex.
    Cell Motility and the Cytoskeleton 06/2007; 64(6):407-17. DOI:10.1002/cm.20192 · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is the leading cause of cancer-related deaths, but it is unclear how cancer cells escape their primary sites in epithelia and disseminate to other sites in the body. One emerging possibility is that transformed epithelial cells could invade the underlying tissue by a process called cell extrusion, which epithelia use to remove cells without disrupting their barrier function. Typically, during normal cell turnover, live cells extrude apically from the epithelium into the lumen and later die by anoikis; however, several oncogenic mutations shift cell extrusion basally, towards the tissue that the epithelium encases. Tumour cells with high levels of survival and motility signals could use basal extrusion to escape from the tissue and migrate to other sites within the body.
    Nature reviews. Cancer 06/2014; DOI:10.1038/nrc3767 · 37.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 01/2015; 1853(3). DOI:10.1016/j.bbamcr.2014.12.036 · 5.30 Impact Factor