Identification of functional domains in sarcoglycans essential for their interaction and plasma membrane targeting.

Sigfried and Janet Weis Center for Research, M.C. 26-11, the Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA.
Experimental Cell Research (Impact Factor: 3.37). 06/2006; 312(9):1610-25. DOI: 10.1016/j.yexcr.2006.01.024
Source: PubMed

ABSTRACT Mutations in sarcoglycans have been reported to cause autosomal-recessive limb-girdle muscular dystrophies. In skeletal and cardiac muscle, sarcoglycans are assembled into a complex on the sarcolemma from four subunits (alpha, beta, gamma, delta). In this report, we present a detailed structural analysis of sarcoglycans using deletion study, limited proteolysis and co-immunoprecipitation. Our results indicate that the extracellular regions of sarcoglycans consist of distinctive functional domains connected by proteinase K-sensitive sites. The N-terminal half domains are required for sarcoglycan interaction. The C-terminal half domains of beta-, gamma- and delta-sarcoglycan consist of a cysteine-rich motif and a previously unrecognized conserved sequence, both of which are essential for plasma membrane localization. Using a heterologous expression system, we demonstrate that missense sarcoglycan mutations affect sarcoglycan complex assembly and/or localization to the cell surface. Our data suggest that the formation of a stable complex is necessary but not sufficient for plasma membrane targeting. Finally, we provide evidence that the beta/delta-sarcoglycan core can associate with the C-terminus of dystrophin. Our results therefore generate important information on the structure of the sarcoglycan complex and the molecular mechanisms underlying the effects of various sarcoglycan mutations in muscular dystrophies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sarcoglycanopathies (SGP) are a group of autosomal recessive muscle disorders caused by primary mutations in one of the four sarcoglycan genes. The sarcoglycans (α-, β-, γ-, and δ-sarcoglycan) form a tetrameric complex at the muscle membrane that is part of the dystrophin-glycoprotein complex and plays an essential role for membrane integrity during muscle contractions. We previously showed that the most frequent missense mutation in α-sarcoglycan (p.R77C) leads to the absence of the protein at the cell membrane due to its blockade by the endoplasmic reticulum (ER) quality control. Moreover, we demonstrated that inhibition of the ER α-mannosidase I activity using kifunensine could rescue the mutant protein localization at the cell membrane. Here, we investigate 25 additional disease-causing missense mutations in the sarcoglycan genes with respect to intracellular fate and localization rescue of the mutated proteins by kifunensine. Our studies demonstrate that, similarly to p.R77C, 22 of 25 of the selected mutations lead to defective intracellular trafficking of the SGs proteins. Six of these were saved from ER retention upon kifunensine treatment. The trafficking of SGs mutants rescued by kifunensine was associated with mutations that have moderate structural impact on the protein.
    Human Mutation 02/2012; 33(2):429-39. DOI:10.1002/humu.21659 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sarcoglycanopathies are a group of autosomal recessive muscle-wasting disorders caused by genetic defects in one of four cell membrane glycoproteins, alpha-, beta-, gamma- or delta-sarcoglycan. These four sarcoglycans form a subcomplex that is closely linked to the major dystrophin-associated protein complex, which is essential for membrane integrity during muscle contraction and provides a scaffold for important signalling molecules. Proper assembly, trafficking and targeting of the sarcoglycan complex is of vital importance, and mutations that severely perturb tetramer formation and localisation result in sarcoglycanopathy. Gene defects in one sarcoglycan cause the absence or reduced concentration of the other subunits. Most genetic defects generate mutated proteins that are degraded through the cell's quality control system; however, in many cases, conformational modifications do not affect the function of the protein, yet it is recognised as misfolded and prematurely degraded. Recent evidence shows that misfolded sarcoglycans could be rescued to the cell membrane by assisting their maturation along the ER secretory pathway. This review summarises the etiopathogenesis of sarcoglycanopathies and highlights the quality control machinery as a potential pharmacological target for therapy of these genetic disorders.
    Expert Reviews in Molecular Medicine 09/2009; 11:e28. DOI:10.1017/S1462399409001203 · 5.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (-)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration.This article is protected by copyright. All rights reserved.
    FEBS Journal 10/2014; 281(24). DOI:10.1111/febs.13098 · 3.99 Impact Factor