Article

Identification of functional domains in sarcoglycans essential for their interaction and plasma membrane targeting

Sigfried and Janet Weis Center for Research, M.C. 26-11, the Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA.
Experimental Cell Research (Impact Factor: 3.37). 06/2006; 312(9):1610-25. DOI: 10.1016/j.yexcr.2006.01.024
Source: PubMed

ABSTRACT Mutations in sarcoglycans have been reported to cause autosomal-recessive limb-girdle muscular dystrophies. In skeletal and cardiac muscle, sarcoglycans are assembled into a complex on the sarcolemma from four subunits (alpha, beta, gamma, delta). In this report, we present a detailed structural analysis of sarcoglycans using deletion study, limited proteolysis and co-immunoprecipitation. Our results indicate that the extracellular regions of sarcoglycans consist of distinctive functional domains connected by proteinase K-sensitive sites. The N-terminal half domains are required for sarcoglycan interaction. The C-terminal half domains of beta-, gamma- and delta-sarcoglycan consist of a cysteine-rich motif and a previously unrecognized conserved sequence, both of which are essential for plasma membrane localization. Using a heterologous expression system, we demonstrate that missense sarcoglycan mutations affect sarcoglycan complex assembly and/or localization to the cell surface. Our data suggest that the formation of a stable complex is necessary but not sufficient for plasma membrane targeting. Finally, we provide evidence that the beta/delta-sarcoglycan core can associate with the C-terminus of dystrophin. Our results therefore generate important information on the structure of the sarcoglycan complex and the molecular mechanisms underlying the effects of various sarcoglycan mutations in muscular dystrophies.

0 Followers
 · 
63 Views
  • Source
    • "Interestingly, these three mutations are localized in the region adjacent to the transmembrane domain, suggesting that physical constraints due to membrane anchoring may impair the recognition by ERQC. In addition, this region was noticed to be important for interaction of SGs with each other, especially β-SG with δ-SG and α-SG with γ-SG [Chen, et al., 2006]. Therefore, it is possible that improper SGs interactions lead to impairment of one of the nonstructural function of the SGs complex, generating sarcoglycanopathy by a pathological mechanism other than destabilization of the complex. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sarcoglycanopathies (SGP) are a group of autosomal recessive muscle disorders caused by primary mutations in one of the four sarcoglycan genes. The sarcoglycans (α-, β-, γ-, and δ-sarcoglycan) form a tetrameric complex at the muscle membrane that is part of the dystrophin-glycoprotein complex and plays an essential role for membrane integrity during muscle contractions. We previously showed that the most frequent missense mutation in α-sarcoglycan (p.R77C) leads to the absence of the protein at the cell membrane due to its blockade by the endoplasmic reticulum (ER) quality control. Moreover, we demonstrated that inhibition of the ER α-mannosidase I activity using kifunensine could rescue the mutant protein localization at the cell membrane. Here, we investigate 25 additional disease-causing missense mutations in the sarcoglycan genes with respect to intracellular fate and localization rescue of the mutated proteins by kifunensine. Our studies demonstrate that, similarly to p.R77C, 22 of 25 of the selected mutations lead to defective intracellular trafficking of the SGs proteins. Six of these were saved from ER retention upon kifunensine treatment. The trafficking of SGs mutants rescued by kifunensine was associated with mutations that have moderate structural impact on the protein.
    Human Mutation 02/2012; 33(2):429-39. DOI:10.1002/humu.21659 · 5.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the proposed roles of sarcoglycan is to stabilize dystrophin glycoprotein complexes in muscle sarcolemma. Involvement in signal transduction has also been proposed and abnormalities in some sarcoglycan genes are known to be responsible for muscular dystrophy. While characterization of sarcoglycans in muscle has been performed, little is known about its functions in the non-muscle tissues in which mammalian sarcoglycans are expressed. Here, we investigated temporal and spatial expression patterns of Drosophila beta-sarcoglycan (dScgbeta) during development by immunohistochemistry. In addition to almost ubiquitous expression in various tissues and organs, as seen for its mammalian counterpart, anti-dScgbeta staining data of embryos, eye imaginal discs, and salivary glands demonstrated cytoplasmic localization during S phase in addition to plasma membrane staining. Furthermore we found that subcellular localization of dScgbeta dramatically changes during mitosis through possible association with tubulin. These observations point to a complex role of sarcoglycans in non-muscle tissues.
    Cell Structure and Function 02/2006; 31(2):173-80. · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Les patients atteints de dystrophies musculaires présentent de plus en plus fréquemment des complications cardiaques, qui sont majoritairement des cardiomyopathies dilatées (CMD), et qui déterminent leur pronostic vital. Dans ce contexte, les traitements de l’atteinte cardiaque sont ceux de l'insuffisance cardiaque, qui agissent sur l'environnement fonctionnel du cœur, mais pas directement sur l’atteinte myocardique. L'objectif de cette thèse a été d'évaluer les effets d'un traitement novateur de la CMD dans les dystrophies musculaires, en utilisant le hamster de la lignée CHF147. La démarche proposée est d'induire un phénomène compensateur de la dilatation cardiaque et ainsi d'améliorer le pronostic vital, en utilisant les propriétés de l'Insulin-like Growth Factor 1 (IGF-1). Des hamsters CHF147 jeunes ont été traités pendant un temps court, de façon systémique avec la protéine recombinante IGF-1 (rhIGF-1) à faible dose. Les effets macroscopiques, histologiques et fonctionnels du traitement ont été évalués 35 jours après le début de celui-ci et les voies de signalisation impliquées dans l'induction des effets observés ont été étudiées. Une étude de survie a été réalisée afin de mesurer les effets du traitement à long terme. L'évaluation des effets à court terme de l'administration de rhIGF-1 sur la CMD du hamster CHF147 indique un ralentissement de la dilatation des cavités cardiaques ainsi que de l’extension de la fibrose myocardique, et une préservation de multiples paramètres fonctionnels, tels que le débit cardiaque, le volume d'éjection, la pression de fin de diastole et, en particulier, la contractilité myocardique. Les effets observés sont dus en partie à des modifications au niveau des protéines impliquées dans le cycle du calcium. A long terme, la survie des hamsters CHF147 traités augmente significativement d'environ 20% et est associée à une préservation partielle de la fonction cardiaque. Toutefois, une augmentation du niveau sérique d’IGF-1 pourrait augmenter le risque d’effets secondaires délétères. Afin de limiter les effets systémiques d’IGF-1 et de cibler son administration au cœur, nous avons injecté localement le plasmide pCMV-IGF1 codant pour l'IGF-1 dans le myocarde des hamsters CHF147. Les effets du traitement ont été évalués après 35 jours et montrent des résultats comparables à ceux obtenus avec la protéine rhIGF-1. En conclusion, ce travail de thèse a montré qu’un traitement basé sur IGF-1 permet de ralentir l’évolution de la CMD des hamsters CHF147, en préservant la structure et la fonction cardiaques, et d’améliorer significativement leur survie. IGF-1 semble donc être un candidat prometteur pour la mise au point d’une approche par thérapie génique dans l’insuffisance cardiaque, due à une CMD, dans le contexte des dystrophies musculaires.
Show more