Article

Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cultured rat astrocytes.

Ordway Research Institute, Albany, NY 12208, USA.
The Journal of Physiology (Impact Factor: 4.54). 06/2006; 572(Pt 3):677-89. DOI: 10.1113/jphysiol.2005.103820
Source: PubMed

ABSTRACT Ubiquitously expressed volume-regulated anion channels (VRACs) are chloride channels which are permeable to a variety of small organic anions, including the excitatory amino acids (EAAs) glutamate and aspartate. Broad spectrum anion channel blockers strongly reduce EAA release in cerebral ischaemia and other pathological states associated with prominent astrocytic swelling. However, it is uncertain whether VRAC serves as a major pathway for EAA release from swollen cells. In the present study, we measured swelling-activated release of EAAs as D-[3H]aspartate efflux, and VRAC-mediated Cl- currents by whole-cell patch clamp in cultured rat astrocytes. We compared the pharmacological profiles of the swelling-activated EAA release pathway and Cl- currents. The expression of candidate Cl- channels was confirmed by RT-PCR. The maxi Cl- channel (p-VDAC) blocker Gd3+, the ClC-2 inhibitor Cd2+, and the MDR-1 blocker verapamil did not affect EAA release or VRAC currents. An antagonist of calcium-sensitive Cl- channels (CaCC), niflumic acid, had little effect on EAA release and only partially inhibited swelling-activated Cl- currents. The phorbol ester PDBu, which blocks ClC-3-mediated Cl- currents, had no effect on VRAC currents and up-regulated EAA release. In contrast, DCPIB, which selectively inhibits VRACs, potently suppressed both EAA release and VRAC currents. Two other relatively selective VRAC inhibitors, tamoxifen and phloretin, also blocked the VRAC currents and strongly reduced EAA release. Taken together, our data suggest that (i) astrocytic volume-dependent EAA release is largely mediated by the VRAC, and (ii) the ClC-2, ClC-3, ClC-4, ClC-5, VDAC, CaCC, MDR-1 and CFTR gene products do not contribute to EAA permeability.

Full-text

Available from: Alexander A Mongin, Jun 09, 2015
0 Followers
 · 
426 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Volume Regulated Anion Channel (VRAC) plays a pivotal role in cell volume regulation in essentially all cell types studied. Additionally, VRAC appears to contribute importantly to a wide range of other cellular functions and pathological events, including cell motility, cell proliferation, apoptosis and excitotoxic glutamate release in stroke. Although biophysically, pharmacologically and functionally thoroughly described, VRAC has until very recently remained a genetic orphan. The search for the molecular identity of VRAC has been long and has yielded multiple potential candidates, all of which eventually turned out to have properties not fully compatible with those of VRAC. Recently, two groups have independently identified the protein Leucine-Rich Repeats Containing 8A (LRRC8A), belonging to family of proteins (LRRC8A-E) distantly related to pannexins, as the likely pore-forming subunit of VRAC. In this brief review, we summarize the history of the discovery of VRAC, outline its basic biophysical and pharmacological properties, link these to several cellular functions in which VRAC appears to play important roles, and sketch the amazing search for the molecular identity of this channel. Finally, we describe properties of the LRRC8 proteins, highlight some features of the LRRC8A knockout mouse, and discuss the impact of the discovery of LRRC8 as VRAC on future research.This article is protected by copyright. All rights reserved.
    Acta Physiologica 01/2015; 213(4). DOI:10.1111/apha.12450 · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence indicates that increased intracellular Na+ concentration ([Na+]i) in astroglial cells is associated with the development of brain edema under ischemic conditions, but the underlying mechanisms are still elusive. Here we report that in primary cultured rat cortical astrocytes, elevations of [Na+]i reflecting those achieved during ischemia cause a marked decrease in hypotonicity-evoked current mediated by volume-regulated anion channel (VRAC). Pharmacological manipulations revealed that VRAC inhibition was not due to the reverse-mode of the plasma membrane sodium/calcium exchanger. The negative modulation of VRAC was also observed in an astrocytic cell line lacking the predominant astrocyte water channel aquaporin 4, indicating that [Na+]i effect was not mediated by the regulation of aquaporin 4 activity. The inward rectifier Cl- current, which is also expressed by cultured astrocytes, was not affected by [Na+]i increase. VRAC depression by high [Na+]i was confirmed in adult astrocytes, suggesting that it was not developmentally regulated. Altogether, these results provide the first evidence that intracellular Na+ dynamics can modulate astrocytic membrane conductance that controls functional processes linked to cell volume regulation and add further support to the concept that limiting astrocyte intracellular Na+ accumulation might be a favorable strategy to counteract the development of brain edema.This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 10/2014; DOI:10.1111/jnc.12962 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The contribution of oxidative stress to ischemic brain damage is well established. Nevertheless, for unknown reasons, several clinically tested antioxidant therapies failed to show benefits in human stroke. Based on our previous in vitro work, we hypothesized that the neuroprotective potency of antioxidants is related to their ability to limit release of the excitotoxic amino acids, glutamate and aspartate. We explored the effects of two antioxidants, tempol and edaravone, on amino acid release in the brain cortex, in a rat model of transient occlusion of the middle cerebral artery (MCAo). Amino acid levels were quantified using a microdialysis approach, with the probe positioned in the ischemic penumbra as verified by a laser Doppler technique. Two-hour MCAo triggered a dramatic increase in the levels of glutamate, aspartate, taurine and alanine. Microdialysate delivery of 10mM tempol reduced the amino acid release by 60-80%, while matching levels of edaravone had no effect. In line with these latter data, an intracerebroventricular injection of tempol but not edaravone (500 nmols each, 15 minutes prior to MCAo) reduced infarction volumes by ~50% and improved neurobehavioral outcomes. In vitro assays showed that tempol was superior in removing superoxide anion, whereas edaravone was more potent in scavenging hydrogen peroxide, hydroxyl radical, and peroxynitrite. Overall, our data suggests that the neuroprotective properties of tempol are likely related to its ability to reduce tissue levels of the superoxide anion and pathological glutamate release, and, in such a way, limit progression of brain infarction within ischemic penumbra. These new findings may be instrumental in developing new antioxidant therapies for treatment of stroke.
    Free Radical Biology and Medicine 09/2014; 77. DOI:10.1016/j.freeradbiomed.2014.08.029 · 5.71 Impact Factor