Article

The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells

Division of Molecular Pharmacology & Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
Cancer Cell (Impact Factor: 23.89). 04/2006; 9(3):175-87. DOI: 10.1016/j.ccr.2006.02.017
Source: PubMed

ABSTRACT The transcriptional circuitry that regulates the quiescence of hematopoietic stem cells is largely unknown. We report that the transcription factor known as MEF (or ELF4), which is targeted by the t(X;21)(q26;q22) in acute myelogenous leukemia, regulates the proliferation of primitive hematopoietic progenitor cells at steady state, controlling their quiescence. Mef null HSCs display increased residence in G0 with reduced 5-bromodeoxyuridine incorporation in vivo and impaired cytokine-driven proliferation in vitro. Due to their increased HSC quiescence, Mef null mice are relatively resistant to the myelosuppressive effects of chemotherapy and radiation. Thus, MEF plays an important role in the decision of stem/primitive progenitor cells to divide or remain quiescent by regulating their entry to the cell cycle.

0 Followers
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Seminars in Cancer Biology 03/2015; ePub ahead of print. DOI:10.1016/j.semcancer.2015.02.006 · 9.14 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue homeostasis requires the presence of multipotent adult stem cells that are capable of efficient self-renewal and differentiation; some of these have been shown to exist in a dormant, or quiescent, cell cycle state. Such quiescence has been proposed as a fundamental property of hematopoietic stem cells (HSCs) in the adult bone marrow, acting to protect HSCs from functional exhaustion and cellular insults to enable lifelong hematopoietic cell production. Recent studies have demonstrated that HSC quiescence is regulated by a complex network of cell-intrinsic and -extrinsic factors. In addition, detailed single-cell analyses and novel imaging techniques have identified functional heterogeneity within quiescent HSC populations and have begun to delineate the topological organization of quiescent HSCs. Here, we review the current methods available to measure quiescence in HSCs and discuss the roles of HSC quiescence and the various mechanisms by which HSC quiescence is maintained. © 2014. Published by The Company of Biologists Ltd.
    Development 12/2014; 141(24):4656-4666. DOI:10.1242/dev.106575 · 6.27 Impact Factor

Full-text

Download
15 Downloads
Available from
Aug 11, 2014