Differential hepatic gene expression in a polygenic mouse model with insulin resistance and hyperglycemia: evidence for a combined transcriptional dysregulation of gluconeogenesis and fatty acid synthesis.

Institute of Pharmacology and Toxicology, Medical Faculty of Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
Journal of Molecular Endocrinology (Impact Factor: 3.08). 03/2004; 32(1):195-208.
Source: PubMed


New Zealand obese (NZO) mice exhibit severe insulin resistance of hepatic glucose metabolism. In order to define its biochemical basis, we studied the differential expression of genes involved in hepatic glucose and lipid metabolism by microarray analysis. NZOxF1 (SJLxNZO) backcross mice were generated in order to obtain populations with heterogeneous metabolism but comparable genetic background. In these backcross mice, groups of controls (normoglycemic/normoinsulinemic), insulin-resistant (normoglycemic/hyperinsulinemic) and diabetic (hyperglycemic/hypoinsulinemic) mice were identified. At 22 weeks, mRNA was isolated from liver, converted to cDNA, and used for screening of two types of cDNA arrays (high-density filter arrays and Affymetrix oligonucleotide microarrays). Differential gene expression was ascertained and assessed by Northern blotting. The data indicate that hyperinsulinemia in the NZO mouse is associated with: (i) increased mRNA levels of enzymes involved in lipid synthesis (fatty acid synthase, malic enzyme, stearoyl-CoA desaturase) or fatty acid oxidation (cytochrome P450 4A14, ketoacyl-CoA thiolase, acyl-CoA oxidase), (ii) induction of the key glycolytic enzyme pyruvate kinase, and (iii) increased mRNA levels of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase. These effects were enhanced by a high-fat diet. In conclusion, the pattern of gene expression in insulin-resistant NZO mice appears to reflect a dissociation of the effects of insulin on genes involved in glucose and lipid metabolism. The data are consistent with a hypothetical scenario in which an insulin-resistant hepatic glucose production produces hyperinsulinemia, and an enhanced insulin- and substrate-driven lipogenesis further aggravates the deleterious insulin resistance of glucose metabolism.

Download full-text


Available from: Hans-Georg Joost, Jul 18, 2014
  • Source
    • "). HFHC diets have been extensively utilized for murine models of obesity, diabetes, and fatty liver. Mice fed this diet develop obesity and many of the components of the metabolic syndrome in a strain-specific manner (Minkina et al. 2012; Jiang et al. 2005; Becker et al. 2004; Schmid et al. 2004; Kobayashi et al. 2004; Rangnekar et al. 2006). In this study, A/J and C57BL/6J "
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent form of human hepatic disease and feeding mice a High-Fat, High-Caloric (HFHC) diet is a standard model of NAFLD. To better understand the genetic basis of NAFLD, we conducted an expression quantitative trait locus (eQTL) analysis of mice fed a HFHC diet. 265 (A/J × C57BL/6J) F2 male mice were fed a HFHC diet for 8 weeks. eQTL analysis was utilized to identify genomic regions that regulate hepatic gene expression of Xbp1s and Socs3. We identified two overlapping loci for Xbp1s and Socs3 on Chr 1 (164.0-185.4 Mb and 174.4-190.5 Mb, respectively) and Chr 11 (41.1-73.1 Mb and 44.0-68.6 Mb, respectively), and an additional locus for Socs3 on Chr 12 (109.9-117.4 Mb). C57BL/6J-Chr 11(A/J)/ NaJ mice fed a HFHC diet manifested the A/J phenotype of increased Xbp1s and Socs3 gene expression (P < 0.05), while C57BL/6J-Chr 1(A/J)/ NaJ mice retained the C57BL/6J phenotype. In addition, we replicated the eQTLs on Chr 1 and 12 (LOD scores ≥ 3.5) using mice from the BXD murine reference panel challenged with CCl4 to induce chronic liver injury and fibrosis. We have identified overlapping eQTLs for Xbp1 and Socs3 on Chr 1 and 11, and consomic mice confirmed that replacing the C57BL/6J Chr 11 with the A/J Chr 11 resulted in an A/J phenotype for Xbp1 and Socs3 gene expression. Identification of the genes for these eQTLs will lead to a better understanding of the genetic factors responsible for NAFLD and potentially other hepatic diseases. Copyright © 2015 Author et al.
    G3-Genes Genomes Genetics 01/2015; 5(4). DOI:10.1534/g3.115.016626 · 3.20 Impact Factor
  • Source
    • "Enhanced fatty acids metabolism and dysregulated gluconeogenesis were previously indicated in polygenic and diet-induced obesity mouse models, both by total hepatic gene expression analysis (Becker et al. 2004) and proteomic study of adipocyte membranes (Ho et al. 2013). Similarly, a liver MT proteins study shows coordinated upregulation of bioenergetic processes during type 2 diabetes progression in rats as potential compensation for the decreased glucose metabolism by insulin resistance (Deng et al. 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although mitochondrial dysfunction is implicated in the pathogenesis of obesity, the molecular mechanisms underlying obesity-related metabolic abnormalities are not well established. We performed mitochondrial quantitative proteomic and whole transcriptome analysis followed by functional annotations within liver and skeletal muscles, using fasted and non-fasted 16- and 48-week-old high-fat diet (HFD)-fed and normal diet-fed (control group) wild-type C56BL/6J mice, and hyperphagic ob/ob and db/db obese mice. Our study identified 1,675 and 704 mitochondria-associated proteins with at least two peptides in liver and muscle, respectively. Of these, 221 liver and 44 muscle proteins were differentially expressed (adjusted p values ≤ 0.05) between control and all obese mice, while overnight fasting altered expression of 107 liver and 35 muscle proteins. In the liver, we distinguished a network of 27 proteins exhibiting opposite direction of expression changes in HFD-fed and hyperphagic mice when compared to control. The network centered on cytochromes P450 3a11 (Cyp3a11) and 4a14 (Cyp4a14), and fructose-bisphosphate aldolase B (Aldob) proteins which bridged proteins cluster involved in Metabolism of xenobiotics with proteins engaged in Fatty acid metabolism and PPAR signaling pathways. Functional annotations revealed that most of the hepatic molecular alterations, which characterized both obesity and fasting, related to different aspects of energy metabolism (such as Fatty acid metabolism, Peroxisome, and PPAR signaling); however, only a limited number of functional annotations could be selected from skeletal muscle data sets. Thus, our comprehensive molecular overview revealed that both obesity and fasting states induce more pronounced mitochondrial proteome changes in the liver than in the muscles. Electronic supplementary material The online version of this article (doi:10.1007/s10142-013-0342-3) contains supplementary material, which is available to authorized users.
    Functional & Integrative Genomics 11/2013; 14(1). DOI:10.1007/s10142-013-0342-3 · 2.48 Impact Factor
  • Source
    • "Transcription of various enzymes involved in lipid metabolism has been reported to increase in hyperinsulinemic or insulin-resistant mice [2, 67]. Transcriptional activation of malic acid has proven to be involved in fatty acid synthesis [68]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes mellitus (T2DM) has an intersecting underlying pathology with thyroid dysfunction. The literature is punctuated with evidence indicating a contribution of abnormalities of thyroid hormones to type 2 DM. The most probable mechanism leading to T2DM in thyroid dysfunction could be attributed to perturbed genetic expression of a constellation of genes along with physiological aberrations leading to impaired glucose utilization and disposal in muscles, overproduction of hepatic glucose output, and enhanced absorption of splanchnic glucose. These factors contribute to insulin resistance. Insulin resistance is also associated with thyroid dysfunction. Hyper- and hypothyroidism have been associated with insulin resistance which has been reported to be the major cause of impaired glucose metabolism in T2DM. The state-of-art evidence suggests a pivotal role of insulin resistance in underlining the relation between T2DM and thyroid dysfunction. A plethora of preclinical, molecular, and clinical studies have evidenced an undeniable role of thyroid malfunctioning as a comorbid disorder of T2DM. It has been investigated that specifically designed thyroid hormone analogues can be looked upon as the potential therapeutic strategies to alleviate diabetes, obesity, and atherosclerosis. These molecules are in final stages of preclinical and clinical evaluation and may pave the way to unveil a distinct class of drugs to treat metabolic disorders.
    Journal of Diabetes Research 04/2013; 2013(6):390534. DOI:10.1155/2013/390534 · 2.16 Impact Factor
Show more