Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster.

Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2006; 103(12):4487-92. DOI: 10.1073/pnas.0509260103
Source: PubMed

ABSTRACT Genome-wide identification of RNAs associated with RNA-binding proteins is crucial for deciphering posttranscriptional regulatory systems. PUMILIO is a member of the evolutionary conserved Puf-family of RNA-binding proteins that repress gene expression posttranscriptionally. We generated transgenic flies expressing affinity-tagged PUMILIO under the control of an ovary-specific promoter, and we purified PUMILIO from whole adult flies and embryos and analyzed associated mRNAs by using DNA microarrays. Distinct sets comprising hundreds of mRNAs were associated with PUMILIO at the two developmental stages. Many of these mRNAs encode functionally related proteins, supporting a model for coordinated regulation of posttranscriptional modules by specific RNA-binding proteins. We identified a characteristic sequence motif in the 3'-untranslated regions of mRNAs associated with PUMILIO, and the sufficiency of this motif for interaction with PUMILIO was confirmed by RNA pull-down experiments with biotinylated synthetic RNAs. The RNA motif strikingly resembles the one previously identified for Puf3p, one of five Saccharomyces cerevisiae Puf proteins; however, proteins encoded by the associated mRNAs in yeast and Drosophila do not appear to be related. The results suggest extensive posttranscriptional regulation by PUMILIO and uncover evolutionary features of this conserved family of RNA-binding proteins.


Available from: Stefan Luschnig, Jun 02, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain tumor (BRAT) is a Drosophila member of the protein family. This family is conserved among metazoan and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown. Genome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition. Our results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM.
    Genome biology 05/2015; 16(1):94. DOI:10.1186/s13059-015-0659-4 · 10.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.
    10/2014; 9(5):389-409. DOI:10.1007/s11515-014-1326-y
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression patterns are determined by rates of mRNA transcription and decay. While transcription is known to regulate many developmental processes, the role of mRNA decay is less extensively defined. A critical step toward defining the role of mRNA decay in neural development is to measure genome-wide mRNA decay rates in neural tissue. Such information should reveal the degree to which mRNA decay contributes to differential gene expression and provide a foundation for identifying regulatory mechanisms that affect neural mRNA decay. We developed a technique that allows genome-wide mRNA decay measurements in intact Drosophila embryos, across all tissues and specifically in the nervous system. Our approach revealed neural-specific decay kinetics, including stabilization of transcripts encoding regulators of axonogenesis and destabilization of transcripts encoding ribosomal proteins and histones. We also identified correlations between mRNA stability and physiologic properties of mRNAs; mRNAs that are predicted to be translated within axon growth cones or dendrites have long half-lives while mRNAs encoding transcription factors that regulate neurogenesis have short half-lives. A search for candidate cis-regulatory elements identified enrichment of the Pumilio recognition element (PRE) in mRNAs encoding regulators of neurogenesis. We found that decreased expression of the RNA-binding protein Pumilio stabilized predicted neural mRNA targets and that a PRE is necessary to trigger reporter-transcript decay in the nervous system. We found that differential mRNA decay contributes to the relative abundance of transcripts involved in cell-fate decisions, axonogenesis, and other critical events during Drosophila neural development. Neural-specific decay kinetics and the functional specificity of mRNA decay suggest the existence of a dynamic neurodevelopmental mRNA decay network. We found that Pumilio is one component of this network, revealing a novel function for this RNA-binding protein.
    Neural Development 04/2015; 10(1):11. DOI:10.1186/s13064-015-0038-6 · 3.37 Impact Factor