Interactions of sequence variants in interleukin-1 receptor-associated kinase4 and the toll-like receptor 6-1-10 gene cluster increase prostate cancer risk. Cancer Epidemiol Biomarkers Prev

Department of Radiation Sciences, Umeå University, Umeå, Västerbotten, Sweden
Cancer Epidemiology Biomarkers & Prevention (Impact Factor: 4.13). 04/2006; 15(3):480-5. DOI: 10.1158/1055-9965.EPI-05-0645
Source: PubMed


Chronic or recurrent inflammation has been suggested as a causal factor in several human malignancies, including prostate cancer. Genetic predisposition is also a strong risk factor in the development of prostate cancer. In particular, Toll-like receptors (TLR), especially the TLR6-1-10 gene cluster, are involved in prostate cancer development. Interleukin-1 receptor-associated kinases (IRAK) 1 and 4 are critical components in the TLR signaling pathway. In this large case-control study, we tested two hypotheses: (a) sequence variants in IRAK1 and IRAK4 are associated with prostate cancer risk and (b) sequence variants in IRAK1/4 and TLR1-6-10 interacts and confers a stronger risk to prostate cancer. We analyzed 11 single nucleotide polymorphisms (four in IRAK1 and seven in IRAK4) among 1,383 newly diagnosed prostate cancer patients and 780 population controls in Sweden. Although the single-nucleotide polymorphisms in IRAK1 and IRAK4 alone were not significantly associated with prostate cancer risk, one single-nucleotide polymorphism in IRAK4, when combined with the high-risk genotype at TLR6-1-10, conferred a significant excess risk of prostate cancer. In particular, men with the risk genotype at TLR6-1-10 and IRAK4-7987 CG/CC had an odds ratio of 9.68 (P = 0.03) when compared with men who had wild-type genotypes. Our findings suggest synergistic effects between sequence variants in IRAK4 and the TLR 6-1-10 gene cluster. Although this study was based on a priori hypothesis and was designed to address many common issues facing this type of study, our results need confirmation in even larger studies.

4 Reads
  • Source
    • "ATP1B3 is derived from the primary differentiation event during mammalian development (Adjaye et al. 2005). IRAK1 has been proposed that one SNP within it, when combined with highrisk genotype at TLR6-1-10, conferred a signifi cant increase in the risk for prostate cancer, suggesting synergistic effects between sequence variants in IRAK1 and the TLR 6-1-10 gene cluster (Sun et al. 2006). LPIN1 is reported to be a candidate gene for human lipodystrophy syndromes as common SNPs in LPIN1 of lipodystrophy patients have been identified (Cao and Hegele, 2002). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The interactions between genetic variants in estrogen receptor (ER) have been identified to be associated with an increased risk of breast cancer. Available evidence indicates that genetic variance within a population plays a crucial role in the occurrence of breast cancer. Thus, the comparison and identification of ER-related gene expression profiles in breast cancer of different ethnic origins could be useful for the development of genetic variant cancer therapy. In this study, we performed microarray experiment to measure the gene expression profiles of 59 Taiwanese breast cancer patients; and through comparative bioinformatics analysis against published U.K. datasets, we revealed estrogen-receptor (ER) related gene expression between Taiwanese and British patients. In addition, SNP databases and statistical analysis were used to elucidate the SNPs associated with ER status. Our microarray results indicate that the expression pattern of the 65 genes in ER+ patients was dissimilar from that of the ER- patients. Seventeen mutually exclusive genes in ER-related breast cancer of the two populations with more than one statistically significant SNP in genotype and allele frequency were identified. These 17 genes and their related SNPs may be important in population-specific ER regulation of breast cancer. This study provides a global and feasible approach to study population-unique SNPs in breast cancer of different ethnic origins.
    Breast cancer 03/2008; 1:35-49.
  • Source
    • "Another hereditary prostate cancer gene candidate is MSR1 at 8p23 likewise involved in innate immune responses [1]. Polymorphisms in TLR genes have also been implicated as predisposition factors [36,37]. Intriguingly, two genes (BCCIP, HMG20B) appeared in our analysis that interact with BRCA2, another, albeit weaker candidate for a hereditary prostate cancer gene [1]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alterations of chromosome 8 and hypomethylation of LINE-1 retrotransposons are common alterations in advanced prostate carcinoma. In a former study including many metastatic cases, they strongly correlated with each other. To elucidate a possible interaction between the two alterations, we investigated their relationship in less advanced prostate cancers. In 50 primary tumor tissues, no correlation was observed between chromosome 8 alterations determined by comparative genomic hybridization and LINE-1 hypomethylation measured by Southern blot hybridization. The discrepancy towards the former study, which had been dominated by advanced stage cases, suggests that both alterations converge and interact during prostate cancer progression. Therefore, interaction analysis was performed on microarray-based expression profiles of cancers harboring both alterations, only one, or none. Application of a novel bioinformatic method identified Gene Ontology (GO) groups related to innate immunity, cytoskeletal organization and cell adhesion as common targets of both alterations. Many genes targeted by their interaction were involved in type I and II interferon signaling and several were functionally related to hereditary prostate cancer genes. In addition, the interaction appeared to influence a switch in the expression pattern of EPB41L genes encoding 4.1 cytoskeleton proteins. Real-time RT-PCR revealed GADD45A, MX1, EPB41L3/DAL1, and FBLN1 as generally downregulated in prostate cancer, whereas HOXB13 and EPB41L4B were upregulated. TLR3 was downregulated in a subset of the cases and associated with recurrence. Downregulation of EPB41L3, but not of GADD45A, was associated with promoter hypermethylation, which was detected in 79% of carcinoma samples. Alterations of chromosome 8 and DNA hypomethylation in prostate cancer probably do not cause each other, but converge during progression. The present analysis implicates their interaction in innate immune response suppression and cytoskeletal changes during prostate cancer progression. The study thus highlights novel mechanisms in prostate cancer progression and identifies novel candidate genes for diagnostic and therapeutic purposes. In particular, TLR3 expression might be useful for prostate cancer prognosis and EPB41L3 hypermethylation for its detection.
    Molecular Cancer 02/2007; 6(1):14. DOI:10.1186/1476-4598-6-14 · 4.26 Impact Factor

  • Value in Health 05/2002; 5(3):209-209. DOI:10.1016/S1098-3015(10)61027-3 · 3.28 Impact Factor
Show more

Similar Publications