Reduction in podocyte density as a pathologic feature in early diabetic nephropathy in rodents: Prevention by lipoic acid treatment

Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0676, USA.
BMC Nephrology (Impact Factor: 1.69). 02/2006; 7(1):6. DOI: 10.1186/1471-2369-7-6
Source: PubMed


A reduction in the number of podocytes and podocyte density has been documented in the kidneys of patients with diabetes mellitus. Additional studies have shown that podocyte injury and loss occurs in both diabetic animals and humans. However, most studies in animals have examined relatively long-term changes in podocyte number and density and have not examined effects early after initiation of diabetes. We hypothesized that streptozotocin diabetes in rats and mice would result in an early reduction in podocyte density and that this reduction would be prevented by antioxidants.
The number of podocytes per glomerular section and the podocyte density in glomeruli from rats and mice with streptozotocin (STZ)-diabetes mellitus was determined at several time points based on detection of the glomerular podocyte specific antigens, WT-1 and GLEPP1. The effect of insulin administration or treatment with the antioxidant, alpha-lipoic acid, on podocyte number was assessed.
Experimental diabetes resulted in a rapid decline in apparent podocyte number and podocyte density. A significant reduction in podocytes/glomerular cross-section was found in STZ diabetes in rats at 2 weeks (14%), 6 weeks (18%) and 8 weeks (34%) following STZ injection. Similar declines in apparent podocyte number were found in STZ diabetes in C57BL/6 mice at 2 weeks, but not at 3 days after injection. Treatment with alpha-lipoic acid substantially prevented podocyte loss in diabetic rats but treatment with insulin had only a modest effect.
STZ diabetes results in reduction in apparent podocyte number and in podocyte density within 2 weeks after onset of hyperglycemia. Prevention of these effects with antioxidant therapy suggests that this early reduction in podocyte density is due in part to increased levels of reactive oxygen species as well as hyperglycemia.

Download full-text


Available from: Jharna Saha,
  • Source
    • "Podocyte injury is characterized by decreased expression of slit diaphragm-associated proteins, nephrin and podocin and increased albumin filtration [4], [5]. Previous studies identified podocyte injury as a key early event leading to glomerular disease [6], seen in patients with diabetic nephropathy [7], [8]. However, the mechanisms involved in high glucose induced podocyte injury are not well established. "
    [Show abstract] [Hide abstract]
    ABSTRACT: (Pro)renin receptor (PRR) expression is upregulated in diabetes. We hypothesized that PRR contributes to podocyte injury via activation of Wnt-β-catenin-snail signaling pathway. Mouse podocytes were cultured in normal (5 mM) or high (25 mM) D-glucose for 3 days. Compared to normal glucose, high glucose significantly decreased mRNA and protein expressions of podocin and nephrin, and increased mRNA and protein expressions of PRR, Wnt3a, β-catenin, and snail, respectively. Confocal microscopy studies showed significant reduction in expression and reorganization of podocyte cytoskeleton protein, F-actin, in response to high glucose. Transwell functional permeability studies demonstrated significant increase in albumin flux through podocytes monolayer with high glucose. Cells treated with high glucose and PRR siRNA demonstrated significantly attenuated mRNA and protein expressions of PRR, Wnt3a, β-catenin, and snail; enhanced expressions of podocin mRNA and protein, improved expression and reorganization of F-actin, and reduced transwell albumin flux. We conclude that high glucose induces podocyte injury via PRR-Wnt- β-catenin- snail signaling pathway.
    PLoS ONE 02/2014; 9(2):e89233. DOI:10.1371/journal.pone.0089233 · 3.23 Impact Factor
  • Source
    • "The hyperglycemia-induced increase in reactive oxygen species (ROS) has been shown to be involved in podocyte apoptosis and depletion in vitro and in vivo, suggesting that podocyte apoptosis/depletion represents a novel early mechanism leading to DN (10,11). There are direct correlations between ERS and oxidative stress (12). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Podocytes are terminally differentiated epithelial cells lacking the ability to proliferate. The loss of podocytes is a hallmark of progressive kidney diseases, including diabetic nephropathy (DN). Endoplasmic reticulum stress (ERS)-induced apoptosis is involved in a number of pathological conditions, including DN. The aim of the present study was to investigate whether a high glucose environment induces the apoptosis of podocytes through ERS. Differentiated mouse podocytes were divided into three groups: the normal glucose group (NG, 1 g/l D-glucose), the high glucose group (HG, 4.5 g/l D-glucose) and the mannitol group (M, 1 g/l D-glucose plus 24.4 mM mannitol). The cells were harvested following stimulation with the indicated treatments for 12, 24, 48 and 72 h. Podocyte apoptosis was determined using TUNEL assay and flow cytometry (propidium iodide staining). Glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP/GADD153) and caspase-12 expression was analyzed by RT-PCR, western blot analysis and immunocytochemistry. The apoptotic rate increased significantly in the HG group compared with the NG and M groups at 48 and 72 h (all P<0.01). GRP78 expression, an indicator of ERS, was increased from 12 h, indicating that ERS was activated. Subsequently, two ER-associated death (ERAD) pathways, the CHOP/GADD153- and caspase‑12-dependent pathways, were detected. CHOP/GADD153 expression reached its peak at 48 h, and caspase-12 expression gradually increased with time. Spearman's correlation analysis revealed that caspase-12 and CHOP/GADD153 positively correlated with the apoptotic rate (r=0.915, P<0.01 and r=0.639, P<0.01). Our results demonstrated that hyperglycemia (high glucose) induced apoptosis partly through ERS in the differentiated mouse podocytes, which possibly contributes to the pathogenesis of DN.
    International Journal of Molecular Medicine 02/2014; 33(4). DOI:10.3892/ijmm.2014.1642 · 2.09 Impact Factor
  • Source
    • "Early loss of podocytes in the diabetic rat and mouse models implicates podocyte damage in the pathogenesis of diabetic nephropathy. It may be that a certain threshold of podocyte damage must be achieved before sclerosis occurs [49], [50]. Siu et al. found that podocyte density and apparent glomerular podocyte number are substantially reduced in rats and mice injected with STZ, a model of Type 1 diabetes mellitus, quite early after initiation of diabetes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the non-obese diabetic (NOD) mice model because it develops autoimmune diabetes that resembles human type 1 diabetes. In diabetic mice, urinary albumin excretion (UAE) was ten-fold increased at an "early stage" of diabetes, and twenty-fold increased at a "later stage" (21 and 40 days, respectively after diabetes diagnosis) as compared to non-obese resistant controls. In NOD Diabetic mice, glomerular enlargement, increased glomerular filtration rate (GFR) and increased blood pressure were observed in the early stage. In the late stage, NOD Diabetic mice developed mesangial expansion and reduced podocyte number. Circulating and urine ACE2 activity were markedly increased both, early and late in Diabetic mice. Insulin administration prevented albuminuria, markedly reduced GFR, blood pressure, and glomerular enlargement in the early stage; and prevented mesangial expansion and the reduced podocyte number in the late stage of diabetes. The increase in serum and urine ACE2 activity was normalized by insulin administration at the early and late stages of diabetes in Diabetic mice. We conclude that the Diabetic mice develops features of early kidney disease, including albuminuria and a marked increase in GFR. ACE2 activity is increased starting at an early stage in both serum and urine. Moreover, these alterations can be completely prevented by the chronic administration of insulin.
    PLoS ONE 01/2014; 9(1):e84683. DOI:10.1371/journal.pone.0084683 · 3.23 Impact Factor
Show more