Article

Caspase cleaved presenilin-1 is part of active gamma-secretase complexes.

Karolinska Institutet, Neurotec, Section for Experimental Geriatrics, Huddinge, Sweden.
Journal of Neurochemistry (Impact Factor: 3.97). 05/2006; 97(2):356-64. DOI: 10.1111/j.1471-4159.2006.03735.x
Source: PubMed

ABSTRACT gamma-Secretase is a key enzyme involved in the processing of the beta-amyloid precursor protein into amyloid beta-peptides (Abeta). Abeta accumulates and forms plaques in Alzheimer's disease (AD) brains. A progressive neurodegeneration and cognitive decline occurs during the course of the disease, and Abeta is believed to be central for the molecular pathogenesis of AD. Apoptosis has been implicated as one of the mechanisms behind the neuronal cell loss seen in AD. We have studied preservation and activity of the gamma-secretase complex during apoptosis in neuroblastoma cells (SH-SY5Y) exposed to staurosporine (STS). We report that the known components (presenilin, Nicastrin, Aph-1 and Pen-2) interact and form active gamma-secretase complexes in apoptotic cells. In addition, the fragments corresponding to the PS1 N-terminal fragment and the caspase-cleaved PS1 C-terminal fragment (PS1-caspCTF) were found to form active gamma-secretase complexes when co-expressed in presenilin (PS) knockout cells. Interestingly, PS1-caspCTF replaced the normal PS1 C-terminal fragment and was co-immunoprecipitated with the gamma-secretase complex in SH-SY5Y cells exposed to STS. In addition, Abeta was detected in medium from apoptotic HEK APP(swe) cells. Together, the data show that gamma-secretase complexes containing PS1-caspCTF are active, and suggest that this proteolytic activity is also important in dying cells and may affect the progression of AD.

0 Bookmarks
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The accumulation of the β-amyloid peptide (Aβ) in Alzheimer's disease (AD) is thought to play a causative role in triggering synaptic dysfunction in neurons, leading to their eventual demise through apoptosis. Aβ is produced and secreted upon sequential cleavage of the amyloid precursor protein (APP) by β-secretases and γ-secretases. However, while Aβ levels have been shown to be increased in the brains of AD patients, little is known about how the cleavage of APP and the subsequent generation of Aβ is influenced, or whether the cleavage process changes over time. It has been proposed that Aβ can bind APP and promote amyloidogenic processing of APP, further enhancing Aβ production. Proof of this idea has remained elusive because a clear mechanism has not been identified, and the promiscuous nature of Aβ binding complicates the task of demonstrating the idea. To work around these problems, we used an antibody-mediated approach to bind and cross-link cell-surface APP in cultured rat primary hippocampal neurons. Here we show that cross-linking of APP is sufficient to raise the levels of Aβ in viable neurons with a concomitant increase in the levels of the β-secretase BACE1. This appears to occur as a result of a sorting defect that stems from the caspase-3-mediated inactivation of a key sorting adaptor protein, namely GGA3, which prevents the lysosomal degradation of BACE1. Together, our data suggest the occurrence of a positive pathogenic feedback loop involving Aβ and APP in affected neurons possibly allowing Aβ to spread to nearby healthy neurons.
    Journal of Neuroscience 08/2012; 32(31):10674-85. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The presenilin/gamma-secretase protease cleaves many type-I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP). Previous studies have shown that apoptosis induces alterations in Abeta production in a caspase-dependent manner. Here, we report that staurosporine (STS)-induced apoptosis induces caspase-8 and/or-2-dependent gamma-secretase activation. Blocking of caspase activity with caspase-8 inhibitor z-IETD-fmk, and caspase-2 inhibitor z-VDVAD-fmk reduced Abeta production by STS in H4 cells expressing the Swedish mutant of APP (HSW) or APP-C99 (H4-C99). There was no inhibitory effect of other caspases (-1, -3, -5, -6, -9) on Abeta production by STS. This finding was further supported by evidence that siRNA transfection, depleting caspase-2 or -8 levels, lowered Abeta production in HSW and H4-C99 cells without affecting expression of APP or gamma-secretase complex. In addition, Abeta production by STS was decreased by JNK inhibitors, SP600125. These results suggest that caspase-2 and/or -8 is involved in presenilin/gamma-secretase activation and Abeta production in apoptosis.
    Journal of Neuroscience Research 02/2010; 88(9):1926-33. · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Markers for caspase activation and apoptosis have been shown in brains of Alzheimer's disease (AD) patients and AD-mouse models. In neurons, caspase activation is associated with elevated amyloid β-peptide (Aβ) production. Caspases cleave numerous substrates including presenilin-1 (PS1). The cleavage takes place in the large cytosolic loop of PS1-C-terminal fragment (PS1CTF), generating a truncated PS1CTF lacking half of the loop domain (caspCTF). The loop has been shown to possess important regulatory functions with regard to Aβ(40) and Aβ(42) production. Previously, we have demonstrated that γ-secretase complexes are active during apoptosis regardless of caspase cleavage in the PS1CTF-loop. Here, a PS1/PS2-knockout mouse blastocyst-derived cell line was used to establish stable or transient cell lines expressing either caspCTF or full-length CTF (wtCTF). We show that caspCTF restores γ-secretase activity and forms active γ-secretase complexes together with Nicastrin, Pen-2, Aph-1 and PS1-N-terminal fragment. Further, caspCTF containing γ-secretase complexes have a sustained capacity to cleave amyloid precursor protein (APP) and Notch, generating APP and Notch intracellular domain, respectively. However, when compared to wtCTF cells, caspCTF cells exhibit increased intracellular production of Aβ(42) accompanied by increased intracellular Aβ(42) /Aβ(40) ratio without changing the Aβ secretion pattern. Similarly, induction of apoptosis in wtCTF cells generate a similar shift in intracellular Aβ pattern with increased Aβ(42) /Aβ(40) ratio. In summary, we show that caspase cleavage of PS1 generates a γ-secretase complex that increases the intracellular Aβ(42) /Aβ(40) ratio. This can have implications for AD pathogenesis and suggests caspase inhibitors as potential therapeutic agents.
    Journal of Cellular and Molecular Medicine 11/2010; 15(10):2150-63. · 4.75 Impact Factor

Full-text (2 Sources)

Download
2 Downloads
Available from
Sep 9, 2014