Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice

Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan.
Toxicological Sciences (Impact Factor: 4.48). 07/2006; 91(2):372-81. DOI: 10.1093/toxsci/kfj159
Source: PubMed

ABSTRACT Although inorganic arsenate (iAs(V)) or arsenite (iAs(III)) is clearly a human carcinogen, it has been difficult to produce tumors in rodents. In the present study, we orally administered iAs(V) to A/J mice to examine arsenic carcinogenicity in rodent. A/J mice (male, n = 120) assigned to four groups were given drinking water containing 0, 1, 10, and 100 ppm iAs(V) for 18 months. At the end of experiment, the complete lungs were removed and used for examining histopathology and extracting RNA and DNA. Epigenetic effects of iAs(V) on DNA methylation patterns of p16INK4a and RASSF1A genes were determined by methylation-specific polymerase chain reaction. Changes of p16INK4a and RASSF1A at mRNA and protein levels were examined by reverse transcriptase-polymerase chain reaction and immunohistochemistry. Arsenic was accumulated dose dependently in the lung tissues of iAs(V)-exposed mice. Increase in lung tumor number and lung tumor size was observed in iAs(V)-exposed mice compared to the control. Histopathological examination showed that the rate of poorly differentiated lung adenocarcinoma was much higher in iAs(V)-exposed mice than in the control. Methylation rates appeared to be higher in a dose-related tendency in lung tumors from iAs(V)-exposed mice compared to the control. Lower or loss of p16INK4a and RASSF1A expression was found in lung tumors from iAs(V)-exposed mice, compared to that in nontumor lung tissues from both control and iAs(V)-exposed mice, and this reduced or lost expression was in accordance with hypermethylation of the genes. In conclusion, iAs(V) exposure increased lung tumor incidence and multiplicity in A/J mice. Epigenetic changes of tumor suppressor genes such as p16INK4a and RASSF1A are involved in the iAs(V)-induced lung carcinogenesis.

Download full-text


Available from: Toshifumi Wakai, Feb 06, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to toxic metals poses a serious human health hazard based on ubiquitous environmental presence, the extent of exposure, and the toxicity and disease states associated with exposure. This global health issue warrants accurate and reliable models derived from the risk assessment process to predict disease risk in populations. There has been considerable interest recently in the impact of environmental toxicants such as toxic metals on the epigenome. Epigenetic modifications are alterations to an individual's genome without a change in the DNA sequence, and include, but are not limited to, three commonly studied alterations: DNA methylation, histone modification, and non-coding RNA expression. Given the role of epigenetic alterations in regulating gene and thus protein expression, there is the potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. In the present review, epigenetic alterations induced by five high priority toxic metals/metalloids are prioritized for analysis and their possible inclusion into the risk assessment process is discussed.
    Frontiers in Genetics 07/2014; 5:201. DOI:10.3389/fgene.2014.00201
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to arsenic, an established human carcinogen, through consumption of highly contaminated drinking water is a worldwide public health concern. Several mechanisms by which arsenical compounds induce tumorigenesis have been proposed, including oxidative stress, genotoxic damage, and chromosomal abnormalities. Recent studies have suggested that epigenetic mechanisms may also mediate toxicity and carcinogenicity resulting from arsenic exposure. We examined the evidence supporting the roles of the three major epigenetic mechanisms-DNA methylation, histone modification, and microRNA (miRNA) expression-in arsenic toxicity and, in particular, carcinogenicity. We also investigated future research directions necessary to clarify epigenetic and other mechanisms in humans. We conducted a PubMed search of arsenic exposure and epigenetic modification through April 2010 and summarized the in vitro and in vivo research findings, from both our group and others, on arsenic-associated epigenetic alteration and its potential role in toxicity and carcinogenicity. Arsenic exposure has been shown to alter methylation levels of both global DNA and gene promoters; histone acetylation, methylation, and phosphorylation; and miRNA expression, in studies analyzing mainly a limited number of epigenetic end points. Systematic epigenomic studies in human populations exposed to arsenic or in patients with arsenic-associated cancer have not yet been performed. Such studies would help to elucidate the relationship between arsenic exposure, epigenetic dysregulation, and carcinogenesis and are becoming feasible because of recent technological advancements.
    Environmental Health Perspectives 01/2011; 119(1):11-9. DOI:10.1289/ehp.1002114 · 7.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic methylation relies on folate-dependent one-carbon metabolism and facilitates urinary As elimination. Clinical manifestations of As toxicity vary considerably among individuals and populations, and poor methylation capacity is thought to confer greater susceptibility. After determining that folate deficiency, hyperhomocysteinemia, and low urinary creatinine are associated with reduced As methylation, and that As exposure is associated with increased genomic methylation of leukocyte DNA, we asked whether these factors are associated with As-induced skin lesion risk among Bangladeshi adults. We conducted a nested case-control study of 274 cases who developed lesions 2 years after recruitment, and 274 controls matched to cases for sex, age, and water As. The odds ratios and 95% confidence intervals (CIs) for development of skin lesions for participants who had low folate (< 9 nmol/L), hyperhomocysteinemia (men, > 11.4 micromol/L; women, > 10.4 micromol/L), or hypomethylated leukocyte DNA at recruitment (< median) were 1.8 (95% CI, 1.1-2.9), 1.7 (95% CI, 1.1-2.6), and 1.8 (95% CI, 1.2-2.8), respectively. Compared with the subjects in the first quartile, those in the third and fourth quartiles for urinary creatinine had a 0.4-fold decrease in the odds of skin lesions (p < 0.01). These results suggest that folate deficiency, hyperhomocysteinemia, and low urinary creatinine, each associated with decreased As methylation, are risk factors for As-induced skin lesions. The increased DNA methylation associated with As exposure previously observed, and confirmed among controls in this study, may be an adaptive change because hypomethylation of leukocyte DNA is associated with increased risk for skin lesions.
    Environmental Health Perspectives 02/2009; 117(2):254-60. DOI:10.1289/ehp.11872 · 7.03 Impact Factor