XIAP Is a Copper Binding Protein Deregulated in Wilson's Disease and Other Copper Toxicosis Disorders

Department of Pathology, University of Michigan Medical School, Ann Arbor, 48109, USA.
Molecular Cell (Impact Factor: 14.46). 04/2006; 21(6):775-85. DOI: 10.1016/j.molcel.2006.01.033
Source: PubMed

ABSTRACT X-linked inhibitor of apoptosis (XIAP), known primarily for its caspase inhibitory properties, has recently been shown to interact with and regulate the levels of COMMD1, a protein associated with a form of canine copper toxicosis. Here, we describe a role for XIAP in copper metabolism. We find that XIAP levels are greatly reduced by intracellular copper accumulation in Wilson's disease and other copper toxicosis disorders and in cells cultured under high copper conditions. Elevated copper levels result in a profound, reversible conformational change in XIAP due to the direct binding of copper to XIAP, which accelerates its degradation and significantly decreases its ability to inhibit caspase-3. This results in a lowering of the apoptotic threshold, sensitizing the cell to apoptosis. These data provide an unsuspected link between copper homeostasis and the regulation of cell death through XIAP and may contribute to the pathophysiology of copper toxicosis disorders.

Download full-text


Available from: Ezra Burstein, Jul 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Copper, iron, and zinc are just three of the main biometals critical for correct functioning of the central nervous system (CNS). They have diverse roles in many functional processes including but not limited to enzyme catalysis, protein stabilization, and energy production. The range of metal concentrations within the body is tightly regulated and when the balance is perturbed, debilitating effects ensue. Homeostasis of brain biometals is mainly controlled by various metal transporters and metal sequestering proteins. The biological roles of biometals are vastly reviewed in the literature with a large focus on the connection to neurological conditions associated with ageing. Biometals are also implicated in a variety of debilitating inherited childhood disorders, some of which arise soon following birth or as the child progresses into early adulthood. This review acts to highlight what we know about biometals in childhood neurological disorders such as Wilson's disease (WD), Menkes disease (MD), neuronal ceroid lipofuscinoses (NCLs), and neurodegeneration with brain iron accumulation (NBIA). Also discussed are some of the animal models available to determine the pathological mechanisms in these childhood disorders, which we hope will aid in our understanding of the role of biometals in disease and in attaining possible therapeutics in the future.
    Frontiers in Aging Neuroscience 03/2013; 5:14. DOI:10.3389/fnagi.2013.00014 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria contain two enzymes, Cu,Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondrial copper handling with other, extramitochondrial copper trafficking pathways. The recent finding that mitochondrial proteins with established roles in CcO assembly can also effect changes in cellular copper levels by modulating copper efflux from the cell supports a mechanistic link between organellar and cellular copper metabolism. However, the proteins and molecular mechanisms that link trafficking of copper to and from the organelle with other cellular copper trafficking pathways are unknown. This review documents our current understanding of copper trafficking to, and within, the mitochondrion for metallation of CcO and Sod1; the pathways by which the two copper centers in CcO are formed; and, the interconnections between mitochondrial function and the regulation of cellular copper homeostasis.
    Biochimica et Biophysica Acta 01/2009; 1793(1):146-53. DOI:10.1016/j.bbamcr.2008.05.002 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Originally described in insect viruses, cellular proteins with Baculoviral IAP repeat (BIR) motifs have been thought to function primarily as inhibitors of apoptosis. The subsequent finding that a subset of IAPs that contain a RING domain have ubiquitin protein ligase (E3) activity implied the presence of other functions. It is now known that IAPs are involved in mitotic chromosome segregation, cellular morphogenesis, copper homeostasis, and intracellular signaling. Here, we review the current understanding of the roles of IAPs in apoptotic and nonapoptotic processes and explore the notion that the latter represents the primary physiologic activities of IAPs.
    Molecular cell 05/2008; 30(2):123-35. DOI:10.1016/j.molcel.2008.03.008 · 14.46 Impact Factor