Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals.

Hasselt University, Centre for Environmental Sciences-Environmental Biology, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
Environmental Pollution (Impact Factor: 3.73). 11/2006; 144(2):524-32. DOI: 10.1016/j.envpol.2006.01.038
Source: PubMed

ABSTRACT In a lysimeter set-up, compost addition to an industrial contaminated soil slightly reduced phytotoxicity to bean seedlings. The "Phytotoxicity Index" (on a scale from 1 to 4) decreased from 3.5 to 2.8. The same treatment also reduced metal accumulation in grasses: mean Zn, Cd and Pb concentrations decreased respectively from 623 to 135, from 6.2 to 1.3 and from 10.7 to <6 mg kg-1 dry weight. When combined with inorganic metal immobilizing amendments, compost had a beneficial effect on plant responses additional to the inorganic amendments alone. Best results were obtained when using compost (C)+cyclonic ashes (CA)+steel shots (SS). The "Phytotoxicity Index" decreased to 1.7, highest diversity of spontaneously colonizing plants occurred, and metal accumulation in grasses reduced to values for uncontaminated soils. Based on the first year evaluation, C+CA+SS showed to be an efficient treatment for amendment assisted phytostabilization of the contaminated Overpelt soil.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The contamination of soils with heavy metals is a global disaster that is related to human activities. Phytostabilization basically refers to the use of metal-tolerant plants and inexpensive mineral or organic soil amendments to reduce the concentrations or toxic effects of contaminants in the environment. Here, we tested the effects of four cost-effective amendments (CaCO3, phosphate rock, activated carbon, and exhausted olive cake ash) on Cd, Zn, and Cu leaching and uptake by ryegrass (Lolium perenne L.). The results showed that all amendments reduced Cd, Zn, and Cu leaching, mainly due to the alkalinity increase. Among all amendments tested, CaCO3 was the most effective treatment in decreasing both the heavy-metal leaching and concentrations in ryegrass shoots. Results obtained suggest the efficacy of several amendments, but further work is needed to gain insight into their possible synergetic effects.
    Soil and Sediment Contamination 01/2014; 23(6). · 0.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of sewage sludge as an immobilising agent in the phytostabilization of metal-contaminated soil was evaluated using five grass species viz., Dactylis glomerata L., Festuca arundinacea Schreb., F. rubra L., Lolium perenne L., L. westerwoldicum L. The function of metal immobilization was investigated by monitoring pH, Eh and Cd, Pb, and Zn levels in column experiment over a period of 5-months. Grasses grown on sewage sludge-amendments produced high biomass in comparison to controls. A significant reduction in metal uptake by plants was also observed as a result of sewage sludge application, which was attributed to decreased bioavailability through soil stabilisation. We have observed that the sludge amendment decreased metal bioavailability and concentrations in soil at a depth of 25 cm, in contrast to untreated columns, where metal concentrations in the soil solution were very high.
    International Journal of Phytoremediation 01/2014; 16(6):593-608. · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l−1) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure–monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk.
    Environmental Pollution 01/2014; 186:195–202. · 3.73 Impact Factor