Article

Brugia malayi asparaginyl-transfer RNA synthetase induces chemotaxis of human leukocytes and activates G-protein-coupled receptors CXCR1 and CXCR2

Medical College of Wisconsin, Milwaukee, Wisconsin, United States
The Journal of Infectious Diseases (Impact Factor: 5.78). 05/2006; 193(8):1164-71. DOI: 10.1086/501369
Source: PubMed

ABSTRACT Background. Lymphatic filariasis is a chronic human parasitic disease in which the parasites repeatedly provoke acute and chronic inflammatory reactions in the host bloodstream and lymphatics. Excretory-secretory products derived from filariae are believed to play an important role in the development of associated immunologic conditions; however, the specific mechanisms involved in these changes are not well understood. Recently, human cytoplasmic aminoacyl-transfer (t) RNA synthetases, which are autoantigens in idiopathic inflammatory myopathies, were shown to activate chemokine receptors on T lymphocytes, monocytes, and immature dendritic cells by recruiting immune cells that could induce innate and adaptive immune responses. Filarial (Brugia malayi) asparaginyl-tRNA synthetase (AsnRS) is known to be an immunodominant antigen that induces strong human immunoglobulin G3 responses.Methods. Recombinant B. malayi AsnRS was used to perform cellular function assays--for example, chemotaxis and kinase activation assays.Results. Unlike human AsnRS, parasite AsnRS is chemotactic for neutrophils and eosinophils. Recombinant B. malayi AsnRS but not recombinant human AsnRS induced chemotaxis of CXCR1 and CXCR2 single-receptor-transfected HEK-293 cell lines, blocked CXCL1-induced calcium flux, and induced mitogen-activated protein kinase.Conclusions. Our findings suggest that a filarial parasite chemoattractant protein may contribute to the development of chronic inflammatory disease and that chemokine receptors may be therapeutic targets to ameliorate parasite-induced pathology.

0 Followers
 · 
93 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past decade, aminoacyl-tRNA synthetases (AARSs) have emerged as a new class of regulatory proteins with widespread functions beyond their classic role in protein synthesis. The functional expansion concurs with the incorporation of new domains and motifs to AARSs and coincides with the emergence of the multi-synthetase complex (MSC) during the course of eukaryotic evolution. Notably, the new domains in AARSs are often found to be structurally disordered or to be linked to the enzyme cores via unstructured linkers. We performed bioinformatic analysis and classified the 20 human cytoplasmic AARSs into three groups based on their propensities for structural disorder. The analysis also suggests that, while the assembly of the MSC mainly involves ordered structural domains, structurally disordered regions play an important role in activating and expanding the regulatory functions of AARSs.
    Chemistry & biology 09/2013; 20(9):1093-9. DOI:10.1016/j.chembiol.2013.07.013 · 6.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases has also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases.For further resources related to this article, please visit the WIREs website.Conflict of interest: The authors have declared no conflicts of interest for this article.
    WIREs RNA 07/2014; 5(4). DOI:10.1002/wrna.1224 · 6.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases.
    01/2013; 4(1). DOI:10.1016/j.ijpddr.2013.10.001