Article

Protection against bubonic and pneumonic plague with a single dose microencapsulated sub-unit vaccine.

DSTL, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
Vaccine (Impact Factor: 3.49). 06/2006; 24(20):4433-9. DOI: 10.1016/j.vaccine.2005.12.016
Source: PubMed

ABSTRACT Protection against virulent plague challenge by the parenteral and aerosol routes was afforded by a single administration of microencapsulated Caf1 and LcrV antigens from Yersinia pestis in BALB/c mice. Recombinant Caf1 and LcrV were individually encapsulated in polymeric microspheres, to the surface of which additional antigen was adsorbed. The microspheres containing either Caf1 or LcrV were blended and used to immunise mice on a single occasion, by either the intra-nasal or intra-muscular route. Both routes of immunisation induced systemic and local immune responses, with high levels of serum IgG being developed in response to both vaccine antigens. In Elispot assays, secretion of cytokines by spleen and draining lymph node cells was demonstrated, revealing activation of both Th1 and Th2 associated cytokines; and spleen cells from animals immunised by either route were found to proliferate in vitro in response to both vaccine antigens. Virulent challenge experiments demonstrated that non-invasive immunisation by intra-nasal instillation can provide strong systemic and local immune responses and protect against high level challenge. Microencapsulation of these vaccine antigens has the added advantage that controlled release of the antigens occurs in vivo, so that protective immunity can be induced after only a single immunising dose.

1 Follower
 · 
85 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Yersinia pestis is a causative agent of plague. F1 and V antigen based vaccines have shown remarkable protection in experimental animals. In order to develop epitope based immunogen, three B and one T-cell epitopes of F1 antigen with palmitate residue at amino terminal were assembled on a lysine backbone as multiple antigen peptide (MAP or F1-MAP). MAP was characterized by SDS-PAGE, immunoblot and immunoreactivity with anti F1 sera. MAP was entrapped in PLGA (polylactide-co-glycolide) microparticles and humoral, mucosal immune responses were studied after intranasal immunization with/without CpG ODN 1826 (CpG)/murabutide in different strains of mice. Serum and mucosal washes were measured for MAP specific IgG, IgA, sIgA and IgG subclasses in three strains of mice. F1-MAP showed high serum antibody and mucosal IgG and IgA peak antibody titers. MAP with CpG showed significantly high (ptextless0.001) peak antibody titer ranging from 102,400 to 204,800 for IgG and 6400 to 12,800 for IgA. High mucosal sIgA and its secretary component detection confirmed generation of mucosal response in intestinal and lung washes. MAP antisera also showed significant immunoreactivity with individual peptides. Moreover, antibody specific activity (IgG, IgA and sIgA) positively correlates with peak antibody titers. Predominantly IgG2a/IgG2b subclass was observed with CpG formulation but in other formulation a mixed IgG1 and IgG2a response was observed. The present study highlights the importance of multiple antigen peptide approach of F1-antigen with CpG as an alternative approach for subunit vaccine.
    International immunopharmacology 11/2012; 15(1). DOI:10.1016/j.intimp.2012.10.029 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4(+) T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.
    Scientific Reports 01/2014; 4:3775. DOI:10.1038/srep03775 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The work described in this dissertation focuses on the design of polyanhydride nanoparticles that function as both adjuvants and long-term antigen delivery vehicles in order to improve vaccination, specifically for biodefense-related applications. Chapter 1 is an introduction into the threat of bioterrorism, polymer-based controlled delivery systems and challenges associated with vaccine design. Chapter 2 is a detailed literature review of topics related to the research conducted in this dissertation. Areas covered include basic immunology, vaccine design, degradable polymer-based adjuvant engineering, plague (Yersinia pestis) biology, and vaccines that confer protection against plague. Chapter 3 overviews the research objectives and the specific aims of this work. Chapter 4 describes the effect polymer chemistry has on uptake of polyanhydride nanoparticles by THP-1 human monocytic cells. Nanoparticles of similar size, regardless of poly[1,6-bis(p-carboxyphenoxy)hexane-co-sebacic acid] (CPH:SA) copolymer chemistry, were fabricated using a novel anti-solvent precipitation technique. Confocal microscopy revealed that less hydrophobic nanoparticles (SA-rich) were more readily internalized and trafficked by monocytes. Interestingly, exposure to nanoparticles of any chemistry enhanced soluble protein uptake by monocytes over cells exposed to soluble protein alone. Chapter 5 utilizes the combination of population and individual analyses in order to better understand the effect chemistry has on nanoparticle uptake and subsequent activation of dendritic cells. Nanoparticles composed of CPH:SA and poly[1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane-co-CPH] (CPTEG:CPH) were used for this study in order to investigate a wide range of chemistries. Nanoparticles composed of less hydrophobic chemistry were able to activate cell surface marker expression where as nanoparticles composed of more hydrophobic chemistry were able to cause the enhanced secretion of cytokines. Using confocal microscopy it was determined that less hydrophobic nanoparticles were more readily internalized and degraded where as more hydrophobic nanoparticles maintained their size intracellularly. 50:50 CPTEG:CPH nanoparticles possessed characteristics of both less hydrophobic and more hydrophobic chemistries. Also, 50:50 CPTEG:CPH nanoparticles were intracellularly aggregated in vesicles which is similar to how dendritic cells treat bacteria. This pathogen-like behavior may explain the activation capacity of nanoparticles of this chemistry. Chapter 6 describes the capacity of a single-dose, antigen-loaded 50:50 CPTEG:CPH nanoparticle-based vaccine to convey long-lived protection against live Yersinia pestis challenge. While the combination of a commercial adjuvant (MPLA) or unloaded 50:50 nanoparticles with soluble antigen was able to convey some protection at 6 weeks post-vaccination, only a combination of soluble antigen with antigen-loaded 50:50 CPTEG:CPH nanoparticles was able to convey 100% protection at 6 and 23 weeks post-vaccination. For mice vaccinated with soluble antigen plus antigen-loaded nanoparticles, bacteria burden and histopathological analyses showed no presence of bacteria and no pathological damage, respectively. Chapter 7 details the conclusions of this dissertation and the future directions of this research. Antigen modification, nanoparticle optimization, novel polymer chemistry and new intracellular imaging tools are all topics covered in this chapter.