Article

User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability

Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, PA 19104-6274, USA.
NeuroImage (Impact Factor: 6.13). 08/2006; 31(3):1116-28. DOI: 10.1016/j.neuroimage.2006.01.015
Source: PubMed

ABSTRACT Active contour segmentation and its robust implementation using level set methods are well-established theoretical approaches that have been studied thoroughly in the image analysis literature. Despite the existence of these powerful segmentation methods, the needs of clinical research continue to be fulfilled, to a large extent, using slice-by-slice manual tracing. To bridge the gap between methodological advances and clinical routine, we developed an open source application called ITK-SNAP, which is intended to make level set segmentation easily accessible to a wide range of users, including those with little or no mathematical expertise. This paper describes the methods and software engineering philosophy behind this new tool and provides the results of validation experiments performed in the context of an ongoing child autism neuroimaging study. The validation establishes SNAP intrarater and interrater reliability and overlap error statistics for the caudate nucleus and finds that SNAP is a highly reliable and efficient alternative to manual tracing. Analogous results for lateral ventricle segmentation are provided.

Download full-text

Full-text

Available from: Heather Cody, Jun 25, 2015
1 Follower
 · 
198 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new treatment strategy based on direct injections of 90Y-hydroxide into the tumor bed in dogs with osteosarcoma was studied. Direct injections of the radiopharmaceutical into the tumor bed were made according to a pretreatment plan established using 18F-FDG images. Using a special drill, cannulas were inserted going through tissue, tumor and bone. Using these cannulas, direct injections of the radiopharmaceutical were made. The in vivo biodistribution of 90Y-hydroxide and the anatomical tumor bed were imaged using a time-of-flight (TOF) PET/CT scanner. The material properties of the tissues were estimated from corresponding CT numbers using an electron-density calibration. Radiation absorbed dose estimates were calculated using Monte Carlo methods where the biodistribution of the pharmaceutical from PET images was sampled using a collapsing 3-D rejection technique. Dose distributions in the tumor bed and surrounding tissues were calculated, showing significant heterogeneity with multiple hot spots at injection sites. Dose volume histograms showed that approximately 33.9% of bone and tumor and 70.2% of bone marrow and trabecular bone received an absorbed dose over 200 Gy; approximately 3.2% of bone and tumor and 31.0% of bone marrow and trabecular bone received a total dose of over 1000 Gy.
    Applied Radiation and Isotopes 03/2015; 97. DOI:10.1016/j.apradiso.2014.11.009 · 1.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human visual cortex comprises many visual field maps organized into clusters. A standard organization separates visual maps into 2 distinct clusters within ventral and dorsal cortex. We combined fMRI, diffusion MRI, and fiber tractography to identify a major white matter pathway, the vertical occipital fasciculus (VOF), connecting maps within the dorsal and ventral visual cortex. We use a model-based method to assess the statistical evidence supporting several aspects of the VOF wiring pattern. There is strong evidence supporting the hypothesis that dorsal and ventral visual maps communicate through the VOF. The cortical projection zones of the VOF suggest that human ventral (hV4/VO-1) and dorsal (V3A/B) maps exchange substantial information. The VOF appears to be crucial for transmitting signals between regions that encode object properties including form, identity, and color and regions that map spatial information. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
    Cerebral Cortex 03/2015; DOI:10.1093/cercor/bhv064 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atlases of the rat brain are widely used as reference for orientation, planning of experiments, and as tools for assigning location to experimental data. Improved quality and use of magnetic resonance imaging (MRI) and other tomographical imaging techniques in rats have allowed the development of new three-dimensional (3-D) volumetric brain atlas templates. The rat hippocampal region is a commonly used model for basic research on memory and learning, and for preclinical investigations of brain disease. The region features a complex anatomical organization with multiple subdivisions that can be identified on the basis of specific cytoarchitectonic or chemoarchitectonic criteria. We here investigate the extent to which it is possible to identify boundaries of divisions of the hippocampal region on the basis of high-resolution MRI contrast. We present the boundaries of 13 divisions, identified and delineated based on multiple types of image contrast observed in the recently published Waxholm Space MRI/DTI template for the Sprague Dawley rat brain (Papp et al., Neuroimage 97:374-386, 2014). The new detailed delineations of the hippocampal formation and parahippocampal region (Waxholm Space atlas of the Sprague Dawley rat brain, v2.0) are shared via the INCF Software Center (http://software.incf.org/), where also the MRI/DTI reference template is available. The present update of the Waxholm Space atlas of the rat brain is intended to facilitate interpretation, analysis, and integration of experimental data from this anatomically complex region. Copyright © 2015. Published by Elsevier Inc.
    NeuroImage 01/2015; 108. DOI:10.1016/j.neuroimage.2014.12.080 · 6.13 Impact Factor