ATM requirement in gene expression responses to ionizing radiation in human lymphoblasts and fibroblasts.

Growth Control and Cancer Group, National Institute of Environmental Health Sciences, PO Box 12233, MD D2-03, Research Triangle Park, NC 27709, USA.
Molecular Cancer Research (Impact Factor: 4.5). 04/2006; 4(3):197-207. DOI: 10.1158/1541-7786.MCR-05-0154
Source: PubMed

ABSTRACT The heritable disorder ataxia telangiectasia (AT) is caused by mutations in the AT-mutated (ATM) gene with manifestations that include predisposition to lymphoproliferative cancers and hypersensitivity to ionizing radiation (IR). We investigated gene expression changes in response to IR in human lymphoblasts and fibroblasts from seven normal and seven AT-affected individuals. Both cell types displayed ATM-dependent gene expression changes after IR, with some responses shared and some responses varying with cell type and dose. Interestingly, after 5 Gy IR, lymphoblasts displayed ATM-independent responses not seen in the fibroblasts at this dose, which likely reflect signaling through ATM-related kinases, e.g., ATR, in the absence of ATM function.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ataxia telangiectasia (AT) is a rare autosomal recessive disease caused by mutations in the ataxia telangiectasia-mutated gene (ATM). AT carriers with one mutant ATM allele are usually not severely affected although they carry increased risk of cancer. There has not been an easy and reliable diagnostic method to identify AT carriers. Cell cycle checkpoint functions upon ionizing radiation (IR)-induced DNA damage and gene expression signatures were analyzed in the current study to test for differential responses in human lymphoblastoid cell lines with different ATM genotypes. While both dose- and time-dependent G1 and G2 checkpoint functions were highly attenuated in ATM-/- cell lines, these functions were preserved in ATM+/- cell lines equivalent to ATM+/+ cell lines. However, gene expression signatures at both baseline (consisting of 203 probes) and post-IR treatment (consisting of 126 probes) were able to distinguish ATM+/- cell lines from ATM+/+ and ATM-/- cell lines. Gene ontology (GO) and pathway analysis of the genes in the baseline signature indicated that ATM function-related categories, DNA metabolism, cell cycle, cell death control and the p53 signaling pathway, were over-represented. The same analyses of the genes in the IR-responsive signature revealed that biological categories including response to DNA damage stimulus, p53 signaling and cell cycle pathways were over-represented, which again confirmed involvement of ATM functions. The results indicate that AT carriers who have unaffected G1 and G2 checkpoint functions can be distinguished from normal individuals and AT patients by expression signatures of genes related to ATM functions.
    Physiological Genomics 08/2013; · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATM is the most significant molecule involved in monitoring the genomic integrity of the cell. Any damage done to DNA relentlessly challenges the cellular machinery involved in recognition, processing and repair of these insults. ATM kinase is activated early to detect and signal lesions in DNA, arrest the cell cycle, establish DNA repair signaling and faithfully restore the damaged chromatin. ATM activation plays an important role as a barrier to tumorigenesis, metabolic syndrome and neurodegeneration. Therefore, studies of ATM-dependent DNA damage signaling pathways hold promise for treatment of a variety of debilitating diseases through the development of new therapeutics capable of modulating cellular responses to stress. In this review, we have tried to untangle the complex web of ATM signaling pathways with the purpose of pinpointing multiple roles of ATM underlying the complex phenotypes observed in AT patients.
    Cellular and Molecular Life Sciences CMLS 05/2011; 68(18):2977-3006. · 5.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Double strand (ds) DNA breaks are a form of DNA damage that can be generated from both genotoxic exposures and physiologic processes, can disrupt cellular functions and can be lethal if not repaired properly. Physiologic dsDNA breaks are generated in a variety of normal cellular functions, including the RAG endonuclease-mediated rearrangement of antigen receptor genes during the normal development of lymphocytes. We previously showed that physiologic breaks initiate lymphocyte development-specific transcriptional programs. Here we compare transcriptional responses to physiological DNA breaks with responses to genotoxic DNA damage induced by ionizing radiation. RESULTS: We identified a central lymphocyte-specific transcriptional response common to both physiologic and genotoxic breaks, which includes many lymphocyte developmental processes. Genotoxic damage causes robust alterations to pathways associated with B cell activation and increased proliferation, suggesting that genotoxic damage initiates not only the normal B cell maturation processes but also mimics activated B cell response to antigenic agents. Notably, changes including elevated levels of expression of Kras and mmu-miR-155 and the repression of Socs1 were observed following genotoxic damage, reflecting induction of a cancer-prone phenotype. CONCLUSIONS: Comparing these transcriptional responses provides a greater understanding of the mechanisms cells use in the differentiation between types of DNA damage and the potential consequences of different sources of damage. These results suggest genotoxic damage may induce a unique cancer-prone phenotype and processes mimicking activated B cell response to antigenic agents, as well as the normal B cell maturation processes.
    BMC Genomics 03/2013; 14(1):163. · 4.04 Impact Factor