Rac GTPase signaling through the PP5 protein phosphatase.

Environmental Biology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2006; 103(13):5202-6. DOI: 10.1073/pnas.0600080103
Source: PubMed

ABSTRACT We have investigated the Rac-dependent mechanism of KCNH2 channel stimulation by thyroid hormone in a rat pituitary cell line, GH(4)C(1), with the patch-clamp technique. Here we present physiological evidence for the protein serine/threonine phosphatase, PP5, as an effector of Rac GTPase signaling. We also propose and test a specific molecular mechanism for PP5 stimulation by Rac-GTP. Inhibition of PP5 with the microbial toxin, okadaic acid, blocked channel stimulation by thyroid hormone and by Rac, but signaling was restored by expression of a toxin-insensitive mutant of PP5, Y451A, which we engineered. PP5 is unique among protein phosphatases in that it contains an N-terminal regulatory domain with three tetratricopeptide repeats (TPR) that inhibit its activity. Expression of the TPR domain coupled to GFP blocked channel stimulation by the thyroid hormone. We also show that the published structures of the PP5 TPR domain and the TPR domain of p67, the Rac-binding subunit of NADPH oxidase, superimpose over 92 alpha carbons. Mutation of the PP5 TPR domain at two predicted contact points with Rac-GTP prevents the TPR domain from functioning as a dominant negative and blocks the ability of Y451A to rescue signaling in the presence of okadaic acid. PP5 stimulation by Rac provides a unique molecular mechanism for the antagonism of Rho-dependent signaling through protein kinases in many cellular processes, including metastasis, immune cell chemotaxis, and neuronal development.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditionally the hERG1 potassium channel has been known to have a fundamental role in membrane excitability of several mammalian cells including cardiac myocytes. hERG1 has recently been found to be expressed in non-excitable cancer cells of different histogenesis, but the role of this channel in cancer biology is unknown. Results form recent studies on the effect hERG1 inhibition in some breast cancer cells are controversial as it can lead to apoptosis or protect against cell death. Nevertheless, these data suggest that the hERG1 channel could have an important role in cancer biology. Here we report the effects of hyperstimulation of hERG1 channel in human mammary gland adenocarcinoma-derived cells. Application of the hERG1 activator, the diphenylurea derivative NS1643, inhibits cell proliferation irreversibly. This event is accompanied by a preferential arrest of the cell cycle in G0/G1 phase without the occurrence of apoptotic events. Consequently, cells responded to NS1643 by developing a senescence-like phenotype associated with increased protein levels of the tumor suppressors p21 and p16(INK4a) and by a positive β-galactosidase assay. These data suggest that prolonged stimulation of the hERG1 potassium channel may activate a senescence program and offers a compelling opportunity to develop a potential antiproliferative cancer therapy.
    Cell Death & Disease 06/2013; 4:e652. DOI:10.1038/cddis.2013.174 · 5.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
    Physiological Reviews 10/2013; 93(4):1659-720. DOI:10.1152/physrev.00021.2012 · 29.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is increasing rapidly in prevalence world-wide. A cardinal feature of most forms of diabetes is lack of insulin-producing capability, either as a result of loss of insulin-producing β-cells or impaired glucose-sensitive insulin secretion from the β-cell or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation of specific intracellular proteins is believed to be an important and versatile mechanism for regulating their biological activity, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis.
    Journal of Endocrinology 03/2014; DOI:10.1530/JOE-14-0002 · 3.59 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014