Article

Rac GTPase signaling through the PP5 protein phosphatase.

Environmental Biology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2006; 103(13):5202-6. DOI: 10.1073/pnas.0600080103
Source: PubMed

ABSTRACT We have investigated the Rac-dependent mechanism of KCNH2 channel stimulation by thyroid hormone in a rat pituitary cell line, GH(4)C(1), with the patch-clamp technique. Here we present physiological evidence for the protein serine/threonine phosphatase, PP5, as an effector of Rac GTPase signaling. We also propose and test a specific molecular mechanism for PP5 stimulation by Rac-GTP. Inhibition of PP5 with the microbial toxin, okadaic acid, blocked channel stimulation by thyroid hormone and by Rac, but signaling was restored by expression of a toxin-insensitive mutant of PP5, Y451A, which we engineered. PP5 is unique among protein phosphatases in that it contains an N-terminal regulatory domain with three tetratricopeptide repeats (TPR) that inhibit its activity. Expression of the TPR domain coupled to GFP blocked channel stimulation by the thyroid hormone. We also show that the published structures of the PP5 TPR domain and the TPR domain of p67, the Rac-binding subunit of NADPH oxidase, superimpose over 92 alpha carbons. Mutation of the PP5 TPR domain at two predicted contact points with Rac-GTP prevents the TPR domain from functioning as a dominant negative and blocks the ability of Y451A to rescue signaling in the presence of okadaic acid. PP5 stimulation by Rac provides a unique molecular mechanism for the antagonism of Rho-dependent signaling through protein kinases in many cellular processes, including metastasis, immune cell chemotaxis, and neuronal development.

Download full-text

Full-text

Available from: Sandra Rossie, Jun 28, 2015
0 Followers
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reversible phosphorylation of proteins is accomplished by opposing activities of kinases and phosphatases. Relatively few protein serine/threonine phosphatases (PSPs) control the specific dephosphorylation of thousands of phosphoprotein substrates. Many PSPs, exemplified by protein phosphatase 1 (PP1) and PP2A, achieve substrate specificity and regulation through combinatorial interactions between conserved catalytic subunits and a large number of regulatory subunits. Other PSPs, represented by PP2C and FCP/SCP, contain both catalytic and regulatory domains within the same polypeptide chain. Here, we discuss biochemical and structural investigations that advance the mechanistic understanding of the three major classes of PSPs, with a focus on PP2A.
    Cell 10/2009; 139(3):468-84. DOI:10.1016/j.cell.2009.10.006 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid-beta (Abeta) is thought to promote neuronal cell loss in Alzheimer's disease, in part through the generation of reactive oxygen species (ROS) and subsequent activation of mitogen-activated protein kinase (MAPK) pathways. Protein phosphatase 5 (PP5) is a ubiquitously expressed serine/threonine phosphatase which has been implicated in several cell stress response pathways and shown to inactivate MAPK pathways through key dephosphorylation events. Therefore, we examined whether PP5 protects dissociated embryonic rat cortical neurons in vitro from cell death evoked by Abeta. As predicted, neurons in which PP5 expression was decreased by small-interfering RNA treatment were more susceptible to Abeta toxicity. In contrast, over-expression of PP5, but not the inactive mutant, PP5(H304Q), prevented MAPK phosphorylation and neurotoxicity induced by Abeta. PP5 also prevented cell death caused by direct treatment with H(2)O(2), but did not prevent Abeta-induced production of ROS. Thus, the neuroprotective effect of PP5 requires its phosphatase activity and lies downstream of Abeta-induced generation of ROS. In summary, our data indicate that PP5 plays a pivotal neuroprotective role against cell death induced by Abeta and oxidative stress. Consequently, PP5 might be an effective therapeutic target in Alzheimer's disease and other neurodegenerative disorders in which oxidative stress is implicated.
    Journal of Neurochemistry 09/2009; 111(2):391-402. DOI:10.1111/j.1471-4159.2009.06337.x · 4.24 Impact Factor
  • Article: Fellini