Article

Charlson Index Is Associated with One-year Mortality in Emergency Department Patients with Suspected Infection

Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
Academic Emergency Medicine (Impact Factor: 2.2). 05/2006; 13(5):530-6. DOI: 10.1197/j.aem.2005.11.084
Source: PubMed

ABSTRACT A patient's baseline health status may affect the ability to survive an acute illness. Emergency medicine research requires tools to adjust for confounders such as comorbid illnesses. The Charlson Comorbidity Index has been validated in many settings but not extensively in the emergency department (ED). The purpose of this study was to examine the utility of the Charlson Index as a predictor of one-year mortality in a population of ED patients with suspected infection.
The comorbid illness components of the Charlson Index were prospectively abstracted from the medical records of adult (age older than 18 years) ED patients at risk for infection (indicated by the clinical decision to obtain a blood culture) and weighted. Charlson scores were grouped into four previously established indices: 0 points (none), 1-2 points (low), 3-4 points (moderate), and > or =5 points (high). The primary outcome was one-year mortality assessed using the National Death Index and medical records. Cox proportional-hazards ratios were calculated, adjusting for age, gender, and markers of 28-day in-hospital mortality.
Between February 1, 2000, and February 1, 2001, 3,102 unique patients (96% of eligible patients) were enrolled at an urban teaching hospital. Overall one-year mortality was 22% (667/3,102). Mortality rates increased with increasing Charlson scores: none, 7% (95% confidence interval [CI] = 5.4% to 8.5%); low, 22% (95% CI = 19% to 24%); moderate, 31% (95% CI = 27% to 35%); and high, 40% (95% CI = 36% to 44%). Controlling for age, gender, and factors associated with 28-day mortality, and using the "none" group as a reference group, the Charlson Index predicted mortality as follows: low, odds ratio of 2.0; moderate, odds ratio of 2.5; and high, odds ratio of 4.7.
This study suggests that the Charlson Index predicts one-year mortality among ED patients with suspected infection.

1 Follower
 · 
276 Views
 · 
372 Downloads
  • Source
    • "In order to ensure early normocapnia was independently associated with good neurological outcome, we performed sensitivity analyses adjusting for candidate variables known to be strong predictors of poor outcome in post-cardiac arrest patients. We selected the following candidate variables for the regression models: (1) initial cardiac rhythm (asystole or pulseless electrical activity (PEA) versus ventricular fibrillation/ventricular tachycardia (VF/VT)), (2) prolonged duration of cardiopulmonary resuscitation (CPR duration > 20 minutes) [4,24-29], (3) post-resuscitation shock (defined as systolic blood pressure < 100 mmHg or vasopressor support required to maintain systolic blood pressure > 100 mmHg during the first 24 hours after ROSC) [6,30,31], (4) metabolic acidosis (defined as one or more recorded base deficit ≤ -6 mmol/L during the first 24 hours after ROSC) [6,32], (5) age (decile), (6) pre-arrest comorbidities (that is Charlson comorbidities index) [33], (7) pre-arrest pulmonary disease, and (8) initiation of therapeutic hypothermia. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-cardiac arrest hypocapnia/hypercapnia have been associated with poor neurological outcome. However, the impact of arterial carbon dioxide (CO2) derangements during the immediate post-resuscitation period following cardiac arrest remains uncertain. We sought to test the correlation between prescribed minute ventilation and post-resuscitation partial pressure of CO2 (PaCO2), and to test the association between early PaCO2 and neurological outcome. We retrospectively analyzed a prospectively compiled single-center cardiac arrest registry. We included adult (age >= 18 years) patients who experienced a non-traumatic cardiac arrest and required mechanical ventilation. We analyzed initial post-resuscitation ventilator settings and initial arterial blood gas analysis (ABG) after initiation of post-resuscitation ventilator settings. We calculated prescribed minute ventilation:MVmL/kg/min=tidalvolumeTV/idealbodyweightIBWxrespiratoryrateRRfor each patient. We then used Pearson's correlation to test the correlations between prescribed MV and PaCO2. We also determined whether patients had normocapnia (PaCO2 between 30 and 50 mmHg) on initial ABG and tested the association between normocapnia and good neurological function (Cerebral Performance Category 1 or 2) at hospital discharge using logistic regression analyses. Seventy-five patients were included. The majority of patients were in-hospital arrests (85%). Pulseless electrical activity/asystole was the initial rhythm in 75% of patients. The median (IQR) TV, RR, and MV were 7 (7 to 8) mL/kg, 14 (14 to 16) breaths/minute, and 106 (91 to 125) mL/kg/min, respectively. Hypocapnia, normocapnia, and hypercapnia were found in 15%, 62%, and 23% of patients, respectively. Good neurological function occurred in 32% of all patients, and 18%, 43%, and 12% of patients with hypocapnia, normocapnia, and hypercapnia respectively. We found prescribed MV had only a weak correlation with initial PaCO2, R = -0.40 (P < 0.001). Normocapnia was associated with good neurological function, odds ratio 4.44 (95%CI 1.33 to 14.85). We found initial prescribed MV had only a weak correlation with subsequent PaCO2 and that early Normocapnia was associated with good neurological outcome. These data provide rationale for future research to determine the impact of PaCO2 management during mechanical ventilation in post-cardiac arrest patients.
    Annals of Intensive Care 03/2014; 4(1):9. DOI:10.1186/2110-5820-4-9
  • Source
    • "This is a severity scoring system that was subsequently validated at one year [9] and was the subject of a recent complimentary review [10]. A further dataset publication provided evidence that the Charlson Co-morbidity score [11], a four-point score developed to objectively quantify the burden of co-morbid illness, also predicted one-year mortality in these patients [12]. A 2006 paper explored the prognostic implications of organ dysfunction and the presence of the Systemic Inflammatory Response Syndrome (SIRS) [13], and a recent publication found a poor association between abnormal temperature or leucocytosis and subsequently proven bacteraemia [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with infections account for a significant proportion of Emergency Department (ED) workload, with many hospital patients admitted with severe sepsis initially investigated and resuscitated in the ED. The aim of this registry is to systematically collect quality observational clinical and microbiological data regarding emergency patients admitted with infection, in order to explore in detail the microbiological profile of these patients, and to provide the foundation for a significant programme of prospective observational studies and further clinical research. ED patients admitted with infection will be identified through daily review of the computerised database of ED admissions, and clinical information such as site of infection, physiological status in the ED, and components of management abstracted from patients' charts. This information will be supplemented by further data regarding results of investigations, microbiological isolates, and length of stay (LOS) from hospital electronic databases. Outcome measures will be hospital and intensive care unit (ICU) LOS, and mortality endpoints derived from a national death registry. This database will provide substantial insights into the characteristics, microbiological profile, and outcomes of emergency patients admitted with infections. It will become the nidus for a programme of research into compliance with evidence-based guidelines, optimisation of empiric antimicrobial regimens, validation of clinical decision rules and identification of outcome determinants. The detailed observational data obtained will provide a solid baseline to inform the design of further controlled trials planned to optimise treatment and outcomes for emergency patients admitted with infections.
    BMC Infectious Diseases 01/2011; 11(1):27. DOI:10.1186/1471-2334-11-27 · 2.61 Impact Factor
  • Source
    • "As a proxy measure for patients' baseline health status, a Charlson comorbidity index [15] was assigned to each study subject based on the diagnosis shown in the NHI claims record during the study period prior to hip fracture. Charlson et al. developed a scoring system for comorbid illness, such that each comorbid condition was assigned a whole number integer ranging from 1 to 6, which was proportional to the relative risk of 1-year mortality associated with that disease [16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The lack of epidemiologic information on osteoporotic hip fractures hampers the development of preventive or curative measures against osteoporosis in South Korea. We conducted a population-based study to estimate the annual incidence of hip fractures. Also, we examined factors associated with post-fracture mortality among Korean elderly to evaluate the impact of osteoporosis on our society and to identify high-risk populations. The Korean National Health Insurance (NHI) claims database was used to identify the incidence of hip fractures, defined as patients having a claim record with a diagnosis of hip fracture and a hip fracture-related operation during 2003. The 6-month period prior to 2003 was set as a 'window period,' such that patients were defined as incident cases only if their first record of fracture was observed after the window period. Cox's proportional hazards model was used to investigate the relationship between survival time and baseline patient and provider characteristics available from the NHI data. The age-standardized annual incidence rate of hip fractures requiring operation over 50 years of age was 146.38 per 100,000 women and 61.72 per 100,000 men, yielding a female to male ratio of 2.37. The 1-year mortality was 16.55%, which is 2.85 times higher than the mortality rate for the general population (5.8%) in this age group. The risk of post-fracture mortality at one year is significantly higher for males and for persons having lower socioeconomic status, living in places other than the capital city, not taking anti-osteoporosis pharmacologic therapy following fracture, or receiving fracture-associated operations from more advanced hospitals such as general or tertiary hospitals. This national epidemiological study will help raise awareness of osteoporotic hip fractures among the elderly population and hopefully motivate public health policy makers to develop effective national prevention strategies against osteoporosis to prevent hip fractures.
    BMC Public Health 05/2010; 10(1):230. DOI:10.1186/1471-2458-10-230 · 2.32 Impact Factor
Show more