Article

Functional magnetic resonance imaging investigation of the effects of neurofeedback training on the neural bases of selective attention and response inhibition in children with attention-deficit/hyperactivity disorder.

Centre de Recherche en Neuropsychologie et Cognition, Département de Psychologie, Université de Montréal, Montréal, Canada.
Applied Psychophysiology and Biofeedback (Impact Factor: 1.13). 04/2006; 31(1):3-20. DOI: 10.1007/s10484-006-9001-y
Source: PubMed

ABSTRACT Two functional magnetic resonance imaging (fMRI) experiments were undertaken to measure the effect of neurofeedback training (NFT), in AD/HD children, on the neural substrates of selective attention and response inhibition. Twenty unmedicated AD/HD children participated to these experiments. Fifteen children were randomly assigned to the Experimental (EXP) group whereas the other five children were randomly assigned to the Control (CON) group. Only subjects in the EXP group underwent NFT. EXP subjects were trained to enhance the amplitude of the SMR (12-15 Hz) and beta 1 activity (15-18 Hz), and decrease the amplitude of theta activity (4-7 Hz). Subjects from both groups were scanned one week before the beginning of NFT (Time 1) and 1 week after the end of NFT (Time 2), while they performed a "Counting Stroop" task (Experiment 1) and a Go/No-Go task (Experiment 2). At Time 1, in both groups, the Counting Stroop task was associated with significant activation in the left superior parietal lobule. For the Go/No-Go task, no significant activity was detected in the EXP and CON groups. At Time 2, in both groups, the Counting Stroop task was associated with significant activation of the left superior parietal lobule. This time, however, there were significant loci of activation, in the EXP group, in the right ACC, left caudate nucleus, and left substantia nigra. No such activation loci were seen in CON subjects. For the Go/No-Go task, significant loci of activation were noted, in the EXP group, in the right ventrolateral prefrontal cortex, right ACcd, left thalamus, left caudate nucleus, and left substantia nigra. No significant activation of these brain regions was measured in CON subjects. These results suggest that NFT has the capacity to functionally normalize the brain systems mediating selective attention and response inhibition in AD/HD children.

Download full-text

Full-text

Available from: Johanne Lévesque, Oct 17, 2014
0 Followers
 · 
194 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we investigated how the electrical activity in the sensorimotor cortex contributes to improved cognitive processing capabilities and how SMR (sensorimotor rhythm, 12-15Hz) neurofeedback training modulates it. Previous evidence indicates that higher levels of SMR activity reduce sensorimotor interference and thereby promote cognitive processing. Participants were randomly assigned to two groups, one experimental (N=10) group receiving SMR neurofeedback training, in which they learned to voluntarily increase SMR, and one control group (N=10) receiving sham feedback. Multiple cognitive functions and electrophysiological correlates of cognitive processing were assessed before and after 10 neurofeedback training sessions. The experimental group but not the control group showed linear increases in SMR power over training runs, which was associated with behavioural improvements in memory and attentional performance. Additionally, increasing SMR led to a more salient stimulus processing as indicated by increased N1 and P3 event-related potential amplitudes after the training as compared to the pre-test. Finally, functional brain connectivity between motor areas and visual processing areas was reduced after SMR training indicating reduced sensorimotor interference. These results indicate that SMR neurofeedback improves stimulus processing capabilities and consequently leads to improvements in cognitive performance. The present findings contribute to a better understanding of the mechanisms underlying SMR neurofeedback training and cognitive processing and implicate that SMR neurofeedback might be an effective cognitive training tool.
    Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 04/2014; DOI:10.1016/j.clinph.2014.03.031 · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An objective biomarker is a compelling need for the early diagnosis of attention deficit hyperactivity disorder (ADHD), as well as for the monitoring of pharmacological treatment effectiveness. The advent of fNIRS, which is relatively robust to the body movements of ADHD children, raised the possibility of introducing functional neuroimaging diagnosis in younger ADHD children. Using fNIRS, we monitored the oxy-hemoglobin signal changes of 16 ADHD children (6 to 13 years old) performing a go/no-go task before and 1.5 h after MPH or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. 16 age-and gender-matched normal controls without MPH administration were also monitored. Relative to control sub-jects, unmedicated ADHD children exhibited reduced activation in the right inferior frontal gyrus (IFG) and middle frontal gyrus (MFG) during go/no-go tasks. The reduced right IFG/MFG activation was acutely nor-malized after MPH administration, but not after placebo administration. The MPH-induced right IFG/MFG activation was significantly larger than the placebo-induced activation. Post-scan exclusion rate was 0% among 16 right-handed ADHD children with IQ > 70. We revealed that the right IFG/MFG activation could serve as a neuro-functional biomarker for monitoring the acute effects of methylphenidate in ADHD children. fNIRS-based examinations were applicable to ADHD children as young as 6 years old, and thus would con-tribute to early clinical diagnosis and treatment of ADHD children.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Authors have argued that various forms of interventions may be more effective in younger children. Is cognitive training also more effective, the earlier the training is applied? We review evidence suggesting that functional neural networks, including those subserving attentional control, may be more unspecialised and undifferentiated earlier in development. We also discuss evidence suggesting that certain skills such as attentional control may be important as ‘hub’ cognitive domains, gating the subsequent acquisition of skills in other areas. Both of these factors suggest that attentional training administered to younger individuals ought to be relatively more effective in improving cognitive functioning across domains. We evaluate studies that have administered forms of cognitive training targeting various subcomponents of attention and the closely related domain of working memory, and we contrast their reported transfer to distal cognitive domains as a function of the age of the participants. Although negative findings continue to be common in this literature we find that cognitive training applied to younger individuals tends to lead to significantly more widespread transfer of training effects. We conclude that future work in this area should concentrate on understanding early intensive training, and discuss a number of practical steps that might help to achieve this aim.
    Developmental Review 12/2012; 32(4):360–387. DOI:10.1016/j.dr.2012.07.001 · 3.23 Impact Factor