Article

Sequence variations in PCSK9, low LDL, and protection against coronary heart disease

Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
New England Journal of Medicine (Impact Factor: 54.42). 04/2006; 354(12):1264-72. DOI: 10.1056/NEJMoa054013
Source: PubMed

ABSTRACT A low plasma level of low-density lipoprotein (LDL) cholesterol is associated with reduced risk of coronary heart disease (CHD), but the effect of lifelong reductions in plasma LDL cholesterol is not known. We examined the effect of DNA-sequence variations that reduce plasma levels of LDL cholesterol on the incidence of coronary events in a large population.
We compared the incidence of CHD (myocardial infarction, fatal CHD, or coronary revascularization) over a 15-year interval in the Atherosclerosis Risk in Communities study according to the presence or absence of sequence variants in the proprotein convertase subtilisin/kexin type 9 serine protease gene (PCSK9) that are associated with reduced plasma levels of LDL cholesterol.
Of the 3363 black subjects examined, 2.6 percent had nonsense mutations in PCSK9; these mutations were associated with a 28 percent reduction in mean LDL cholesterol and an 88 percent reduction in the risk of CHD (P=0.008 for the reduction; hazard ratio, 0.11; 95 percent confidence interval, 0.02 to 0.81; P=0.03). Of the 9524 white subjects examined, 3.2 percent had a sequence variation in PCSK9 that was associated with a 15 percent reduction in LDL cholesterol and a 47 percent reduction in the risk of CHD (hazard ratio, 0.50; 95 percent confidence interval, 0.32 to 0.79; P=0.003).
These data indicate that moderate lifelong reduction in the plasma level of LDL cholesterol is associated with a substantial reduction in the incidence of coronary events, even in populations with a high prevalence of non-lipid-related cardiovascular risk factors.

3 Followers
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic findings reported approximately 9 years ago in the Journal indicated that rare sequence variants in the gene encoding proprotein convertase subtilisin-kexin type 9 serine protease (PCSK9) were associated with significantly lower long-term plasma levels of low-density lipoprotein (LDL) cholesterol.(1) The observed reduction in LDL cholesterol levels was similar to that attained with moderate-intensity statin therapy. The benefits of lifelong lowering of LDL cholesterol levels were substantial; a 47 to 88% lower risk of coronary heart disease was observed over a period of 15 years in middle-aged persons with such genetic polymorphisms. Further genetic studies indicated that PCSK9 . . .
    New England Journal of Medicine 03/2015; DOI:10.1056/NEJMe1502192 · 54.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWASs) have successfully uncovered thousands of robust associations between common variants and complex traits and diseases. Despite these successes, much of the heritability of these traits remains unexplained. Because low-frequency and rare variants are not tagged by conventional genome-wide genotyping arrays, they may represent an important and understudied component of complex trait genetics. In contrast to common variant GWASs, there are many different types of study designs, assays and analytic techniques that can be utilized for rare variant association studies (RVASs). In this review, we briefly present the different technologies available to identify rare genetic variants, including novel exome arrays. We also compare the different study designs for RVASs and argue that the best design will likely be phenotype-dependent. We discuss the main analytical issues relevant to RVASs, including the different statistical methods that can be used to test genetic associations with rare variants and the various bioinformatic approaches to predicting in silico biological functions for variants. Finally, we describe recent rare variant association findings, highlighting the unexpected conclusion that most rare variants have modest-to-small effect sizes on phenotypic variation. This observation has major implications for our understanding of the genetic architecture of complex traits in the context of the unexplained heritability challenge.
    Genome Medicine 02/2015; 7(1):16. DOI:10.1186/s13073-015-0138-2 · 4.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: by defects in the low-density lipoprotein receptor gene and apo lipoprotein B 100 genes, respectively. The clinical phenotype of both diseases is characterized by increased plasma levels of total cholesterol and low density lipoprotein cholesterol, tendinous xanthomata, and premature coronary heart disease. Objectives. The aim of this study is to perform an association study between different gene sequence variants in low-density lipoprotein and apo lipoprotein B 100 genes to the clinical finding and lipid profile parameters of the study subjects. Material and Methods. A group of 164 familial hypercholesterolemic patients were recruited. The promoter region, exon 2–15 of the low density lipoprotein gene and parts of exon 26 and 29 of apo lipoprotein B 100 gene were screened by Denaturating Gradient High Performance Liquid Chromatography. Results. For the apo lipoprotein B 100 gene, those with apo lipoprotein B 100 gene mutation have a significantly higher frequency of cardiovascular disease (P = 0.045), higher low density lipoprotein cholesterol and total cholesterol: high density lipoprotein cholesterol ratio than those without mutation (P = 0.03 and 0.02, respectively). For the low density lipoprotein gene defect those with frame shift mutation group showed the worst clinical presentation in terms of low density lipoprotein cholesterol level and cardiovascular frequency. Conclusions. There was a statistically significant association between mutations of low density lipoprotein gene and apo lipoprotein B 100 genes and history of cardiovascular disease, younger age of presentation, family history of hyperlipidemia, tendon xanthoma and low density lipoprotein cholesterol level (Adv Clin Exp Med 2013, 22, 1, 00–00).
    Advances in Clinical and Experimental Medicine 06/2013; · 0.09 Impact Factor

Preview

Download
4 Downloads
Available from