Article

Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition

Metabolic Research Laboratory and Section of Endocrinology, Metabolism & Nutrition, VA Medical Center, Minneapolis, MN, USA.
Nutrition & Metabolism (Impact Factor: 3.36). 02/2006; 3:16. DOI: 10.1186/1743-7075-3-16
Source: PubMed

ABSTRACT Over the past several years our research group has taken a systematic, comprehensive approach to determining the effects on body function (hormonal and non-hormonal) of varying the amounts and types of proteins, carbohydrates and fats in the diet. We have been particularly interested in the dietary management of type 2 diabetes. Our objective has been to develop a diet for people with type 2 diabetes that does not require weight loss, oral agents, or insulin, but that still controls the blood glucose concentration. Our overall goal is to enable the person with type 2 diabetes to control their blood glucose by adjustment in the composition rather than the amount of food in their diet.
This paper is a brief summary and review of our recent diet-related research, and the rationale used in the development of diets that potentially are useful in the treatment of diabetes.
We determined that, of the carbohydrates present in the diet, absorbed glucose is largely responsible for the food-induced increase in blood glucose concentration. We also determined that dietary protein increases insulin secretion and lowers blood glucose. Fat does not significantly affect blood glucose, but can affect insulin secretion and modify the absorption of carbohydrates. Based on these data, we tested the efficacy of diets with various protein:carbohydrate:fat ratios for 5 weeks on blood glucose control in people with untreated type 2 diabetes. The results were compared to those obtained in the same subjects after 5 weeks on a control diet with a protein:carbohydrate:fat ratio of 15:55:30. A 30:40:30 ratio diet resulted in a moderate but significant decrease in 24-hour integrated glucose area and % total glycohemoglobin (%tGHb). A 30:20:50 ratio diet resulted in a 38% decrease in 24-hour glucose area, a reduction in fasting glucose to near normal and a decrease in %tGHb from 9.8% to 7.6%. The response to a 30:30:40 ratio diet was similar.
Altering the diet composition could be a patient-empowering method of improving the hyperglycemia of type 2 diabetes without weight loss or pharmacologic intervention.

Full-text

Available from: Mary Gannon, Jun 22, 2014
0 Followers
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity, particularly visceral and ectopic adiposity, increases the risk of type 2 diabetes. The aim of this study was to determine if restriction of dietary carbohydrate is beneficial for body composition and metabolic health. Two studies were conducted. In the first, 69 overweight/obese men and women, 53% of whom were European American (EA) and 47% of whom were African American (AA), were provided with 1 of 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 43%, 18%, and 39%, respectively) for 8 wk at a eucaloric level and 8 wk at a hypocaloric level. In the second study, 30 women with polycystic ovary syndrome (PCOS) were provided with 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 41%, 19%, and 40%, respectively) at a eucaloric level for 8 wk in a random-order crossover design. As previously reported, among overweight/obese adults, after the eucaloric phase, participants who consumed the lower-carbohydrate vs. the lower-fat diet lost more intra-abdominal adipose tissue (IAAT) (11 ± 3% vs. 1 ± 3%; P < 0.05). After weight loss, participants who consumed the lower-carbohydrate diet had 4.4% less total fat mass. Original to this report, across the entire 16-wk study, AAs lost more fat mass with a lower-carbohydrate diet (6.2 vs. 2.9 kg; P < 0.01), whereas EAs showed no difference between diets. As previously reported, among women with PCOS, the lower-carbohydrate arm showed decreased fasting insulin (-2.8 μIU/mL; P < 0.001) and fasting glucose (-4.7 mg/dL; P < 0.01) and increased insulin sensitivity (1.06 arbitrary units; P < 0.05) and "dynamic" β-cell response (96.1 · 10(9); P < 0.001). In the lower-carbohydrate arm, women lost both IAAT (-4.8 cm(2); P < 0.01) and intermuscular fat (-1.2 cm(2); P < 0.01). In the lower-fat arm, women lost lean mass (-0.6 kg; P < 0.05). Original to this report, after the lower-carbohydrate arm, the change in IAAT was positively associated with the change in tumor necrosis factor α (P < 0.05). A modest reduction in dietary carbohydrate has beneficial effects on body composition, fat distribution, and glucose metabolism. This trial was registered at clinicaltrials.gov as NCT00726908 and NCT01028989. © 2015 American Society for Nutrition.
    Journal of Nutrition 01/2015; 145(1):177S-83S. DOI:10.3945/jn.114.195065 · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A moderate low-carbohydrate diet has been receiving attention in the dietary management of type 2 diabetes (T2DM). A fundamental issue has still to be addressed; how much carbohydrate delta-reduction (Δcarbohydrate) from baseline would be necessary to achieve a certain decrease in hemoglobin A1c (HbA1c) levels.
    Nutrition & Metabolism 07/2014; 11:33. DOI:10.1186/1743-7075-11-33 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prevailing thinking about obesity and related diseases holds that quantifying calories should be a principal concern and target for intervention. Part of this thinking is that consumed calories – regardless of their sources – are equivalent; i.e. ‘a calorie is a calorie’. The present commentary discusses various problems with the idea that ‘a calorie is a calorie’ and with a primarily quantitative focus on food calories. Instead, the authors argue for a greater qualitative focus on the sources of calories consumed (i.e. a greater focus on types of foods) and on the metabolic changes that result from consuming foods of different types. In particular, the authors consider how calorie-focused thinking is inherently biased against high-fat foods, many of which may be protective against obesity and related diseases, and supportive of starchy and sugary replacements, which are likely detrimental. Shifting the focus to qualitative food distinctions, a central argument of the paper is that obesity and related diseases are problems due largely to food-induced physiology (e.g. neurohormonal pathways) not addres- sable through arithmetic dieting (i.e. calorie counting). The paper considers potential harms of public health initiatives framed around calorie balance sheets – targeting ‘calories in’ and/or ‘calories out’ – that reinforce messages of overeating and inactivity as underlying causes, rather than intermediate effects, of obesity. Finally, the paper concludes that public health should work primarily to support the consumption of whole foods that help protect against obesity-promoting energy imbalance and metabolic dysfunction and not continue to promote calorie-directed messages that may create and blame victims and possibly exacerbate epidemics of obesity and related diseases.
    Public Health Nutrition 11/2014; DOI:10.1017/S1368980014002559 · 2.48 Impact Factor