Article

A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen.

Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
Cell (Impact Factor: 33.12). 04/2006; 124(6):1283-98. DOI: 10.1016/j.cell.2006.01.040
Source: PubMed

ABSTRACT To enable arrayed or pooled loss-of-function screens in a wide range of mammalian cell types, including primary and nondividing cells, we are developing lentiviral short hairpin RNA (shRNA) libraries targeting the human and murine genomes. The libraries currently contain 104,000 vectors, targeting each of 22,000 human and mouse genes with multiple sequence-verified constructs. To test the utility of the library for arrayed screens, we developed a screen based on high-content imaging to identify genes required for mitotic progression in human cancer cells and applied it to an arrayed set of 5,000 unique shRNA-expressing lentiviruses that target 1,028 human genes. The screen identified several known and approximately 100 candidate regulators of mitotic progression and proliferation; the availability of multiple shRNAs targeting the same gene facilitated functional validation of putative hits. This work provides a widely applicable resource for loss-of-function screens, as well as a roadmap for its application to biological discovery.

2 Bookmarks
 · 
158 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide RNA interference (RNAi) screening is an emerging and powerful technique for genetic screens, which can be divided into arrayed RNAi screen and pooled RNAi screen/selection based on different screening strategies. To date, several genome-wide RNAi screens have been successfully performed to identify host factors essential for influenza virus replication. However, the host factors identified by different research groups are not always consistent. Taking influenza virus screens as an example, we found that a number of screening parameters may directly or indirectly influence the primary hits identified by the screens. This review highlights the differences among the published genome-wide screening approaches and offers recommendations for performing a good pooled shRNA screen/selection.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell proliferation is a hallmark of cancer and depends on complex signaling networks that are chiefly supported by protein kinase activities. Therapeutic strategies have been used to target specific kinases but new methods are required to identify combined targets and improve treatment. Here, we propose a small interfering RNA genetic screen and an integrative approach to identify kinase networks involved in the proliferation of cancer cells. The functional siRNA screen of 714 kinases in HeLa cells identified 91 kinases implicated in the regulation of cell growth, most of them never being reported in previous whole-genome siRNA screens. Based on gene ontology annotations, we have further discriminated between two classes of kinases that, when suppressed, result in alterations of the mitotic index and provoke cell-cycle arrest. Extinguished kinases that lead to a low mitotic index mostly include kinases implicated in cytosolic signaling. In contrast, extinguished kinases that result in a high mitotic index mostly include kinases implicated in cell division. By mapping hit kinases in the PhosphPOINT phosphoprotein database, we generated scale-free networks consisting of 449 and 661 protein-protein interactions for kinases from low MI and high MI groups, respectively. Further analyses of the kinase interactomes revealed specific modules such as FER- and CRKL-containing modules that connect three members of the epidermal growth factor receptor (EGFR) family, suggesting a tight control of the mitogenic EGF-dependent pathway. Based on experimental studies, we confirm the involvement of these two kinases in the regulation of tumor cell growth. Based on a combined approach of large kinome-wide siRNA screens and ontology annotations, our study identifies for the first time two kinase groups differentially implicated in the control of cell proliferation. We further demonstrate that integrative analysis of the kinase interactome provides key information which can be used to facilitate or optimize target design for new therapeutic strategies. The complete list of protein-protein interactions from the two functional kinase groups will provide a useful database for future investigations.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triple-negative breast cancer (TNBC) has poor prognostic outcome compared with other types of breast cancer. The molecular and cellular mechanisms underlying TNBC pathology are not fully understood. Here, we report that the transcription factor BCL11A is overexpressed in TNBC including basal-like breast cancer (BLBC) and that its genomic locus is amplified in up to 38% of BLBC tumours. Exogenous BCL11A overexpression promotes tumour formation, whereas its knockdown in TNBC cell lines suppresses their tumourigenic potential in xenograft models. In the DMBA-induced tumour model, Bcl11a deletion substantially decreases tumour formation, even in p53-null cells and inactivation of Bcl11a in established tumours causes their regression. At the cellular level, Bcl11a deletion causes a reduction in the number of mammary epithelial stem and progenitor cells. Thus, BCL11A has an important role in TNBC and normal mammary epithelial cells. This study highlights the importance of further investigation of BCL11A in TNBC-targeted therapies.
    Nature Communications 01/2015; 6:5987. DOI:10.1038/ncomms6987 · 10.74 Impact Factor

Full-text (2 Sources)

Download
35 Downloads
Available from
Jun 1, 2014