Repeated proton beam therapy for hepatocellular carcinoma.

Proton Medical Research Center, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan.
International Journal of Radiation OncologyBiologyPhysics (Impact Factor: 4.52). 06/2006; 65(1):196-202. DOI: 10.1016/j.ijrobp.2005.11.043
Source: PubMed

ABSTRACT To retrospectively evaluate the safety and effectiveness of repeated proton beam therapy for newly developed or recurrent hepatocellular carcinoma (HCC).
From June 1989 through July 2000, 225 patients with HCC underwent their first course of proton beam therapy at the University of Tsukuba. Of them, 27 with 68 lesions who had undergone two or more courses were retrospectively reviewed in this study. Median interval between the first and second course was 24.5 months (range 3.3-79.8 months). Median total dose of 72 Gy in 16 fractions and 66 Gy in 16 fractions were given for the first course and the rest of the courses, respectively.
The 5-year survival rate and median survival period from the beginning of the first course for the 27 patients were 55.6% and 62.2 months, respectively. Five-year local control rate for the 68 lesions was 87.8%. Of the patients, 1 with Child-Pugh class B and another with class C before the last course suffered from acute hepatic failure.
Repeated proton beam therapy for HCC is safe when the patient has a target in the peripheral region of the liver and liver function is Child-Pugh class A.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Proton radiotherapy has seen an increasing role in the treatment of hepatocellular carcinoma (HCC). Historically, external beam radiotherapy has played a very limited role in HCC due to a high incidence of toxicity to surrounding normal structures. The ability to deliver a high dose of radiation to the tumor is a key factor in improving outcomes in HCC. Advances in photon radiotherapy have improved dose conformity and allowed dose escalation to the tumor. However, despite these advances there is still a large volume of normal liver that receives a considerable radiation dose during treatment. Proton beams do not have an exit dose along the beam path once they enter the body. The inherent physical attributes of proton radiotherapy offer a way to maximize tumor control via dose escalation while avoiding excessive radiation to the remaining liver, thus increasing biological effectiveness. In this review we discuss the physical attributes and rationale for proton radiotherapy in HCC. We also review recent literature regarding clinical outcomes of using proton radiotherapy for the treatment of HCC.
    Chinese Journal of Cancer Research 12/2012; 24(4):361-7. · 0.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proton-beam radiotherapy (PBT) has been shown to be effective to hepatocellular carcinoma (HCC) as a nonsurgical local treatment option. However, HCC still remains as one of the most difficult cancers to be cured because of frequent recurrences. Thus, methods to inhibit the recurrence need to be explored. To prevent the HCC recurrence, we here report on a prospective phase I study of 'in situ' tumor vaccination using CalTUMP, a newly developed immunoadjuvant consisting of BCG extract bound to hydroxyapatite and microparticulated tuberculin, following local PBT for HCC. Patients with locally advanced recurrent HCC, which had been heavily pretreated with various treatments, were enrolled. PBT was performed with the conventional method to the target HCC. Subsequently, CalTUMP was injected into the same irradiated-tumor three times at one-week intervals. Three dose-levels of CalTUMP (1/10, 1/3, and 1/1) were administered to 3 patients each. Vital signs, blood samples, ultrasound, and computed tomographic scans were monitored to evaluate the safety. Three intratumoral injections of CalTUMP following PBT (median dose: 72.6 GyE) were accomplished in 9 patients. Transient low-grade fever and minor laboratory changes were observed in 7 patients after CalTUMP injections. No other treatment-related adverse events were observed. Median progression-free survival was 6.0 months (range: 2.1-14.2) and 4 patients were progression-free for more than 1 year. Intratumoral injection of CalTUMP following PBT was feasible and safe in patients with heavily pre-treated HCC. Further clinical studies to evaluate the efficacy of this in situ tumor vaccination are warranted.
    Radiation Oncology 10/2013; 8(1):239. · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper aimed to review the literature concerning the use of proton therapy systematically in the treatment of hepatocellular carcinoma, focusing on clinical results and technical issues. The literature search was conducted according to a specific protocol in the Medline and Scopus databases by two independent researchers covering the period of 1990–2012. Both clinical and technical studies referring to a population of patients actually treated with protons were included. The PRISMA guidelines for reporting systematic reviews were followed. A final set of 16 studies from seven proton therapy institutions worldwide were selected from an initial dataset of 324 reports. Seven clinical studies, five reports on technical issues, three studies on treatment related toxicity and one paper reporting both clinical results and toxicity analysis were retrieved. Four studies were not published as full papers. Passive scattering was the most adopted delivery technique. More than 900 patients with heterogeneous stages of disease were treated with various fractionation schedules. Only one prospective full paper was found. Local control was approximately 80% at 3–5 years, average overall survival at 5 years was 32%, with data comparable to surgery in the most favorable groups. Toxicity was low (mainly gastrointestinal). Normal liver V0Gy < 30%volume and V30Gy < 18–25%volume were suggested as cut-off values for hepatic toxicity. The good clinical results of the selected papers are counterbalanced by a low level of evidence. However, the rationale to enroll patients in prospective studies appears to be strong.
    Radiotherapy and Oncology 01/2014; · 4.52 Impact Factor