Article

Prolactin potentiates transforming growth factor alpha induction of mammary neoplasia in transgenic mice.

Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA.
American Journal Of Pathology (Impact Factor: 4.6). 05/2006; 168(4):1365-74. DOI: 10.2353/ajpath.2006.050861
Source: PubMed

ABSTRACT Prolactin influences mammary development and carcinogenesis through endocrine and autocrine/paracrine mechanisms. In virgin female mice, pro-lactin overexpression under control of a mammary selective nonhormonally responsive promoter, neu-related lipocalin, results in estrogen receptor alpha (ERalpha)-positive and ERalpha-negative adenocarcinomas. However, disease in vivo occurs in the context of dysregulation of multiple pathways. In this study, we investigated the ability of prolactin to modulate carcinogenesis when co-expressed with the potent oncogene transforming growth factor alpha (TGFalpha) in bitransgenic mice. Prolactin and TGFalpha cooperated to reduce dramatically the latency of mammary macrocyst development, the principal lesion type induced by TGFalpha. In combination, prolactin and TGFalpha also increased the incidence and reduced the latency of other preneoplastic lesions and increased cellular turnover in structurally normal alveoli and ducts compared with single transgenic females. Bitransgenic glands contained higher levels of phosphorylated ERK1/2 compared with single TGFalpha transgenic glands, suggesting that this kinase may be a point of signaling crosstalk. Furthermore, transgenic prolactin also reversed the decrease in ERalpha induced by neu-related lipocalin-TGFalpha. Our findings demonstrate that locally produced prolactin can strikingly potentiate the carcinogenic actions of another oncogene and modify ovarian hormone responsiveness, suggesting that prolactin signaling may be a potential therapeutic target.

0 Followers
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prolactin (PRL) is a peptide hormone that is produced by the pituitary gland and is known to regulate lactogenic differentiation. There is a significant body of evidence that points to autocrine production of prolactin and activation of an autocrine/paracrine signaling pathway to regulate cell proliferation and migration and inhibition of cell death. This perspective highlights the recent study in the October 1, 2012, issue of Genes & Development by Chen and colleagues (pp. 2154-2168) that describes a mechanism for autocrine prolactin production and places the finding in the context of a role for prolactin in breast development and cancer.
    Genes & development 10/2012; 26(20):2253-8. DOI:10.1101/gad.204636.112 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The contributions of prolactin (PRL) to breast cancer are becoming increasingly recognized. To better understand the role for PRL in this disease, its interactions with other oncogenic growth factors and hormones must be characterized. Here, we review our current understanding of PRL crosstalk with other mammary oncogenic factors, including estrogen, epidermal growth factor (EGF) family members, and insulin-like growth factor-I (IGF-I). The ability of PRL to potentiate the actions of these targets of highly successful endocrine and molecular therapies suggests that PRL and/or its receptor (PRLR) may be an attractive therapeutic target(s). We discuss the potential benefit of PRL/PRLR-targeted therapy in combination with established therapies and implications for de novo and acquired resistance to treatment.
    Molecular and Cellular Endocrinology 09/2009; 307(1-2):1-7. DOI:10.1016/j.mce.2009.03.014 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiologic studies have demonstrated that increased prolactin (PRL) exposure raises the risk of invasive estrogen receptor alpha (ERalpha)-positive breast cancer in women. However, the mechanism(s) whereby this occurs and the interactions with estrogen itself in this disease remain poorly understood. In order to investigate the role of ovarian hormones in the disease process, we employed a transgenic model neu-related lipocalin (NRL)-PRL in which transgenic PRL is directed to mammary epithelial cells by the PRL- and estrogen-insensitive NRL promoter, mimicking the endogenous PRL expression within the breast observed in women. This high local exposure leads to mammary lesion development and eventually carcinomas. Ovariectomy (ovx), shortly after puberty, did not alter the incidence or latency of PRL-induced mammary carcinomas, consistent with the independence of PRL from circulating estrogens as a risk factor for invasive breast cancer in women. However, chronic estrogen administration to ovx NRL-PRL females decreased the latency of both ERalpha-positive and -negative tumors. We identified multiple mechanisms that may underlie this observation. Elevated estrogen exposure cooperated with PRL to increase epithelial proliferation and myoepithelial abnormalities, increasing the incidence of preneoplastic lesions. Critical components of the extracellular matrix secreted by the myoepithelium were reduced with age, and transgenic PRL raised transcripts for tenascin-C and maspin, both associated with tumor progression and poor prognosis in subclasses of clinical breast tumors. Mammary pERK1/2 and pAkt, but not phosphorylated Stat5, were markedly elevated by local PRL. Together, these findings indicate that PRL employs multiple mechanisms to promote mammary tumorigenesis.
    Journal of Endocrinology 08/2009; 203(1):99-110. DOI:10.1677/JOE-09-0221 · 3.59 Impact Factor