Article

Detailed model of the aggregation event between two fractal clusters

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Hönggerberg HCI, 8093 Zurich, Switzerland.
The Journal of Physical Chemistry B (Impact Factor: 3.38). 05/2006; 110(13):6574-86. DOI: 10.1021/jp056538e
Source: PubMed

ABSTRACT A model has been developed for describing the aggregation process of two fractal clusters under quiescent conditions. The model uses the approach originally proposed by Smoluchowski for the diffusion-limited aggregation of two spherical particles but accounts for the possibility of interpenetration between the fractal clusters. It is assumed that when a cluster diffuses toward a reference cluster their center-to-center distance can be smaller than the sum of their radii, and their aggregation process is modeled using a diffusion-reaction equation. The reactivity of the clusters is assumed to depend on the reactivity and number of their particles involved in the aggregation event. The model can be applied to evaluate the aggregation rate constant as a function of the prevailing operating conditions by simply changing the value of the particle stability ratio, without any a priori specification of a diffusion-limited cluster aggregation, reaction-limited cluster aggregation, or transition regime. Furthermore, the model allows one to estimate the structure properties of the formed cluster after the aggregation, based on the computed distance between the aggregating clusters in the final cluster.

0 Followers
 · 
60 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fractal dimension (D f) of the clusters formed during the aggregation of colloidal systems reflects correctly the coalescence extent among the particles (Gauer et al., Macromolecules 42:9103, 2009). In this work, we propose to use the fast small-angle light scattering (SALS) technique to determine the D f value during the aggregation. It is found that in the diffusion-limited aggregation regime, the D f value can be correctly determined from both the power law regime of the average structure factor of the clusters and the scaling of the zero angle intensity versus the average radius of gyration. The obtained D f value is equal to that estimated from the technique proposed in the above work, based on dynamic light scattering (DLS). In the reaction-limited aggregation (RLCA) regime, due to contamination of small clusters and primary particles, the power law regime of the average structure factor cannot be properly defined for the D f estimation. However, the scaling of the zero angle intensity versus the average radius of gyration is still well defined, thus allowing one to estimate the D f value, i.e., the coalescence extent. Therefore, when the DLS-based technique cannot be applied in the RLCA regime, one can apply the SALS technique to monitor the coalescence extent. Applicability and reliability of the technique have been assessed by applying it to an acrylate copolymer colloid.
    Colloid and Polymer Science 07/2012; 290(11). DOI:10.1007/s00396-012-2611-4 · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have studied the link between the kinetics of clustering and the phase behavior of dilute colloids with short range attractions of moderate strength. This was done by means of computer simulations and a theoretical kinetic model originally developed to deal with reversible colloidal aggregation. Three different regions of the phase diagram were accessed. For weak attractions, a gas phase of small clusters in equilibrium forms in the system. For intermediate attractions, the system undergoes liquid-gas separation, which is signatured by the formation of a few large droplike aggregates, a gas phase of small clusters, and an overall kinetics where a few seeds succeed in explosively growing at long times, after a lag time. Finally, for very strong attractions, fractal unbreakable clusters form and grow following DLCA-like (diffusion limited cluster aggregation) kinetics; liquid-gas separation is prevented by the strength of the bonds, which do not allow restructuration. Good qualitative and quantitative agreement is found between the dynamic simulations and the kinetic model in all the three regions.
    The Journal of Physical Chemistry B 06/2007; 111(20):5564-72. DOI:10.1021/jp068698b · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report zeta potential and aggregation kinetics data on colloidal latex particles immersed in water-alcohol media. Zeta potential values show absolute maxima for volume fractions of alcohol of 0.10 and 0.05 for ethanol and 1-propanol, respectively. For methanol, no maximum of the absolute value of the zeta potential was found. Aggregation kinetics was studied by means of a single-cluster optical sizing equipment and for alcohol volume fractions ranging from 0 to 0.1. The aggregation processes are induced by adding different potassium bromide concentrations to the samples. We expected to find a slowdown of the overall aggregation kinetics for ethanol and 1-propanol, and no significant effect for methanol, as compared with pure water data. That is, we expected the zeta potential to govern the overall aggregation rate. However, we obtained a general enhancement of the aggregation kinetics for methanol and 1-propanol and a general slowdown of the aggregation rate for ethanol. In addition, aggregation data under ethanol show a slower kinetics for large electrolyte concentration than that obtained for intermediate electrolyte concentration. We think that these anomalous behaviors are linked to layering, changes in hydrophobicity of particle surfaces due to alcohol adsorption, complex ion-water-alcohol-surface structuring, and competition between alcohol-surface adsorption and alcohol-alcohol clustering.
    Journal of Colloid and Interface Science 07/2007; 310(2):471-80. DOI:10.1016/j.jcis.2007.02.018 · 3.55 Impact Factor