Isoflurane, but Not Sevoflurane, Increases Transendothelial Albumin Permeability in the Isolated Rat Lung

University of Illinois at Chicago, Chicago, Illinois, United States
Anesthesiology (Impact Factor: 5.88). 05/2006; 104(4):777-85. DOI: 10.1097/00000542-200604000-00023
Source: PubMed


Caveolae mediated transendothelial transport of albumin has recently been shown to be the primary mechanism regulating microvascular endothelial albumin permeability. The authors investigated the effects of isoflurane and sevoflurane on pulmonary endothelial albumin permeability and assessed the potential role of the caveolae scaffold protein, caveolin-1, in these effects.
Isolated rat lungs and cultured rat lung microvessel endothelial cells (RLMVECs) were exposed to 1.0 or 2.0 minimum alveolar concentration (MAC) isoflurane or sevoflurane for 30 min. I-albumin permeability-surface area product and capillary filtration coefficient were determined in the isolated lungs. In RLMVECs, uptake and transendothelial transport of I-albumin were measured in the absence and presence of pretreatment with 2 mm methyl-beta-cyclodextrin, a caveolae-disrupting agent. Uptake of fluorescent-labeled albumin, as well as phosphorylation of Src kinase and caveolin-1, was also determined. In Y14F-caveolin-1 mutant (nonphosphorylatable) expressing RLMVECs, uptake of I-albumin and phosphorylation of caveolin-1 were evaluated.
In the isolated lungs, 2.0 MAC isoflurane increased I-albumin permeability-surface area product by 48% without affecting capillary filtration coefficient. In RLMVECs, isoflurane more than doubled the uptake of I-albumin and caused a 54% increase in the transendothelial transport of I-albumin. These effects were blocked by pretreatment with methyl-beta-cyclodextrin. The isoflurane-induced increase in uptake of I-albumin in wild-type RLMVECs was abolished in the Y14F-caveolin-1 mutant expressing cells. Isoflurane also caused a twofold increase in Src and caveolin-1 phosphorylation. Neither 1.0 MAC isoflurane nor 1.0 or 2.0 MAC sevoflurane affected any index of albumin transport or phosphorylation of caveolin-1.
Isoflurane, but not sevoflurane, increased lung transendothelial albumin permeability through enhancement of caveolae-mediated albumin uptake and transport in the isolated lung. This effect may involve an enhanced phosphorylation of caveolin-1.

10 Reads
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caveolae, small invaginations in the plasma membrane, contain caveolins (Cav) that scaffold signaling molecules including the tyrosine kinase Src. We tested the hypothesis that cardiac protection involves a caveolin-dependent mechanism. We used in vitro and in vivo models of ischemia-reperfusion injury, electron microscopy (EM), transgenic mice, and biochemical assays to address this hypothesis. We found that Cav-1 mRNA and protein were expressed in mouse adult cardiac myocytes (ACM). The volatile anesthetic, isoflurane, protected ACM from hypoxia-induced cell death and increased sarcolemmal caveolae. Hearts of wild-type (WT) mice showed rapid phosphorylation of Src and Cav-1 after isoflurane and ischemic preconditioning. The Src inhibitor PP2 reduced phosphorylation of Src (Y416) and Cav-1 in the heart and abolished isoflurane-induced cardiac protection in WT mice. Infarct size (percent area at risk) was reduced by isoflurane in WT (30.5+/-4 vs. 44.2+/-3, n=7, P<0.05) but not Cav-1(-/-) mice (46.6+/-5 vs. 41.7+/-3, n=7). Cav-1(-/-) mice exposed to isoflurane showed significant alterations in Src phosphorylation and recruitment of C-terminal Src kinase, a negative regulator of Src, when compared to WT mice. The results indicate that isoflurane modifies cardiac myocyte sarcolemmal membrane structure and composition and that activation of Src and phosphorylation of Cav-1 contribute to cardiac protection. Accordingly, therapies targeted to post-translational modification of Src and Cav-1 may provide a novel approach for such protection.
    The FASEB Journal 05/2007; 21(7):1565-74. DOI:10.1096/fj.06-7719com · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Volatile anesthetics protect the heart from ischemia/reperfusion injury but the mechanisms for this protection are poorly understood. Caveolae, sarcolemmal invaginations, and caveolins, scaffolding proteins in caveolae, localize molecules involved in cardiac protection. We tested the hypothesis that caveolae and caveolins are essential for volatile anesthetic-induced cardiac protection using cardiac myocytes (CMs) from adult rats and in vivo studies in caveolin-3 knockout mice (Cav-3(-/-)). We incubated CM with methyl-beta-cyclodextrin (MbetaCD) or colchicine to disrupt caveolae formation, and then exposed the myocytes to the volatile anesthetic isoflurane (30 min, 1.4%), followed by simulated ischemia/reperfusion (SI/R). Isoflurane protected CM from SI/R [23.2+/-1.6% vs. 71.0+/-5.8% cell death (assessed by trypan blue exclusion), P<0.001] but this protection was abolished by MbetaCD or colchicine (84.9+/-5.5% and 64.5+/-6.1% cell death, P<0.001). Membrane fractionation by sucrose density gradient centrifugation of CM treated with MbetaCD or colchicine revealed that buoyant (caveolae-enriched) fractions had decreased phosphocaveolin-1 and caveolin-3 compared to control CM. Cardiac protection in vivo was assessed by measurement of infarct size relative to the area at risk and cardiac troponin levels. Isoflurane-induced a reduction in infarct size and cardiac troponin relative to control (infarct size: 26.5%+/-2.6% vs. 45.3%+/-5.4%, P<0.01; troponin: 27.7+/-4.4 vs. 77.7+/-11.8 ng/ml, P<0.05). Isoflurane-induced cardiac protection was abolished in Cav-3(-/-) mice (infarct size: 53.4%+/-6.1% vs. 53.2%+/-3.5%, P<0.01; troponin: 102.1+/-22.3 vs. 105.9+/-8.2 ng/ml, P<0.01). Isoflurane-induced cardiac protection is thus dependent on the presence of caveolae and the expression of caveolin-3. We conclude that caveolae and caveolin-3 are critical for volatile anesthetic-induced protection of the heart from ischemia/reperfusion injury.
    Journal of Molecular and Cellular Cardiology 01/2008; 44(1):123-30. DOI:10.1016/j.yjmcc.2007.10.003 · 4.66 Impact Factor
Show more