Article

Identification of rotenone-induced modifications in alpha-synuclein using affinity pull-down and tandem mass spectrometry.

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
Analytical Chemistry (Impact Factor: 5.83). 05/2006; 78(7):2422-31. DOI: 10.1021/ac051978n
Source: PubMed

ABSTRACT Parkinson's disease is a movement disorder that results from a loss of dopaminergic neurons in the substantia nigra. The disease is characterized by mitochondrial dysfunction, oxidative stress, and the presence of "Lewy body" inclusions enriched with aggregated forms of alpha-synuclein, a presynaptic protein. Although alpha-synuclein is modified at various sites in Lewy bodies, it is unclear how sequence-specific posttranslational modifications modulate the aggregation of the protein in oxidatively stressed neurons. To begin to address this problem, we developed an affinity pull-down/mass spectrometry method to characterize the primary structure of histidine-tagged alpha-synuclein isolated from catecholaminergic neurons. Using this method, we mapped posttranslational modifications of alpha-synuclein from untreated neurons and neurons exposed to rotenone, an inhibitor of mitochondrial complex I. Various posttranslational modifications suggestive of oxidative damage or repair were identified in a region comprising a 20-residue stretch in the C-terminal part of the protein. The results indicate that alpha-synuclein is subject to discrete posttranslational modifications in neurons with impaired mitochondrial function. Our affinity pull-down/mass spectrometry method is a useful tool to examine how specific modifications of alpha-synuclein contribute to neurologic disorders such as Parkinson's disease.

0 Bookmarks
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuropathological evidence indicates that dopaminergic cell death in Parkinson's disease (PD) involves impairment of mitochondrial complex I, oxidative stress, microglial activation, and the formation of Lewy bodies. Epidemiological findings suggest that the consumption of berries rich in anthocyanins and proanthocyanidins may reduce PD risk. In this study, we investigated whether extracts rich in anthocyanins, proanthocyanidins, or other polyphenols suppress the neurotoxic effects of rotenone in a primary cell culture model of PD. Dopaminergic cell death elicited by rotenone was suppressed by extracts prepared from blueberries, grape seed, hibiscus, blackcurrant, and Chinese mulberry. Extracts rich in anthocyanins and proanthocyanidins exhibited greater neuroprotective activity than extracts rich in other polyphenols, and a number of individual anthocyanins interfered with rotenone neurotoxicity. The blueberry and grape seed extracts rescued rotenone-induced defects in mitochondrial respiration in a dopaminergic cell line, and a purple basal extract attenuated nitrite release from microglial cells stimulated by lipopolysaccharide. These findings suggest that anthocyanin- and proanthocyanidin-rich botanical extracts may alleviate neurodegeneration in PD via enhancement of mitochondrial function.
    Brain research 03/2014; · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein aggregation and dysfunction of ubiquitin proteasome system (UPS) have been implicated in Parkinson's disease (PD) pathology for a long time. Heat shock proteins (HSPs) have neuro-protective effects in PD as they assist in protein refolding and targeting of irreparable proteins to UPS. To realize their benefits in a chronically progressing disease like PD, it is imperative to maintain slightly up-regulated levels of HSPs consistently over a longer period of time. Here, we evaluate the possible beneficial effects of HSP inducer carbenoxolone (cbx) in a rotenone-based rat model of PD. Simultaneously with rotenone, a low dose of cbx (20 mg/kg body weight) was administered for five weeks to male SD rats. Weekly behavioral analysis along with end-point evaluation of HSPs, UPS activity, apoptosis, and oxidative stress were performed. The activation of heat shock factor-1 (HSF-1) and up-regulation of HSP70, HSP40, and HSP27 levels in mid-brain following cbx administration resulted in the reduction of α-synuclein and ubiquitin aggregation. This decrease seems to be mediated by reduction in protein carbonylation as well as up-regulation of UPS activity. In addition, the decrease in apoptosis and oxidative stress following HSP upregulation prevented the decline in tyrosine hydroxylase (TH) and dopamine levels in mid-brain region, which in turn resulted in improved motor functions. Thus, persistent HSP induction at low levels by cbx could improve the PD pathophysiology.
    Neuropharmacology 11/2013; · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histidine-tagged proteins are widely used in biochemical studies and frequently detected with antibodies specific for the histidine tag. Immunocytochemistry is widely used in studies with overexpressed proteins to determine cellular localization and in the case of histidine-tagged proteins can be carried out with anti-polyhistidine antibodies. Recent studies have suggested that polyhistidine sequences are present within a small number of human proteins and may direct expression to the nucleus and nuclear speckles compartments of the cell. In this study immunocytochemical staining of human SH-SY5Y neuroblastoma cell lines with the HIS-1 anti-polyhistidine monoclonal antibody were determined. Results showed that the HIS-1 anti-polyhistidine monoclonal antibody stained endogenous nuclear proteins in SH-SY5Y cells. The stained proteins were contained within the nuclear membrane, but were not directly linked to DNA. In a histidine-tagged catalase overexpressing cell line the HIS-1 anti-polyhistidine monoclonal antibody showed nuclear staining, whilst staining with the CAT-505 anti-catalase monoclonal antibody showed primarily cytoplasmic staining. These results suggest that anti-polyhistidine antibody staining shows significant cross-reactivity with endogenous nuclear proteins in SH-SY5Y neuroblastoma cells and may not be suitable for localization studies of histidine-tagged proteins. Immunocytochemical studies with anti-polyhistidine antibodies and localization of histidine-tagged proteins must be confirmed with protein specific antibodies or other methodology.
    Acta Histochemica 05/2014; · 1.76 Impact Factor