Immunogenicity and safety of a novel therapeutic hepatitis C virus (HCV) peptide vaccine: a randomized, placebo controlled trial for dose optimization in 128 healthy subjects.

Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
Vaccine (Impact Factor: 3.49). 06/2006; 24(20):4343-53. DOI: 10.1016/j.vaccine.2006.03.009
Source: PubMed

ABSTRACT As interferon/ribavirin-based standard therapy is curative in only about half of HCV patients, there remains an important need for alternatives including vaccines. The novel peptide vaccine IC41 consists of five synthetic peptides harboring HCV T cell epitopes and poly-L-arginine as synthetic adjuvant. In this randomized, placebo-controlled trial, 128 HLA-A2 positive healthy volunteers received four s.c. vaccinations of seven different doses IC41, HCV peptides alone, poly-l-arginine alone or saline solution, every 4 weeks. IC41 was safe and well tolerated. Mild to moderate local reactions were transient. Immunogenicity was assessed using T cell epitope specific [3H]-thymidine proliferation, IFN-gamma ELIspot and HLA-tetramer assays. IC41 induced responses in all dose groups. Higher responder rates were recorded in higher dose groups and increasing number of vaccinations were associated with higher responder rates and more robust responses. Poly-L-arginine was required for the aimed-for Th1/Tc1-type immunity (IFN-gamma secreting T cells).

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to surpass the problem of genetic variability of hepatitis C virus envelope proteins during vaccine development, we used the so-called "reverse vaccinology"approach - "from genome to vaccine". Database of HCV protein sequences was designed, viral genome analysis was performed, and several highly conserved sites were revealed in HCV envelope proteins in the framework of this approach. These sites demonstrated low antigenic activity in full-size proteins and HCV virions: antibodies against these sites were not found in all hepatitis C patients. However, two sites, which contained a wide set of potential T-helper epitope motifs, were revealed among these highly conserved ones. We constructed and prepared by solid-phase peptide synthesis several artificial peptide constructs composed of two linker-connected highly conserved HCV envelope E2 protein sites; one of these sites contained a set of T-helper epitope motifs. Experiments on laboratory animals demonstrated that the developed peptide constructs manifested immunogenicity compared with one of protein molecules and were able to raise antibodies, which specifically bound HCV envelope proteins. We succeeded in obtaining antibodies reactive with HCV from hepatitis C patient plasma upon the immunization with some constructs. An original preparation of a peptide vaccine against hepatitis C is under development on the basis of these peptide constructs.
    03/2015; 61(2):254-264. DOI:10.18097/pbmc20156102254
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The T cell receptor (TCR) interacts with peptide-major histocompatibility complex (pMHC) to enable T cell development and trigger adaptive immune responses. For this reason, TCR:pMHC interactions have been intensely studied for over two decades. However, the details of how various binding parameters impact T cell activation remain elusive. Most measurements were made using recombinant proteins by surface plasmon resonance, a three-dimensional (3D) technique in which fluid-phase receptors and ligands are removed from their cellular environment. This approach found TCR:pMHC interactions with relatively low affinities and slow off-rates for agonist peptides. Newer generation techniques have analyzed TCR:pMHC interactions in two dimensions (2D), with both proteins anchored in apposing plasma membranes. These approaches reveal in situ TCR:pMHC interaction kinetics that are of high affinity and exhibit rapid on- and off-rates upon interaction with agonist ligands. Importantly, 2D binding parameters correlate better with T cell functional responses to a spectrum of ligands than 3D measures.
    Frontiers in Immunology 04/2012; 3:86. DOI:10.3389/fimmu.2012.00086
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review considers the stages of the development of synthetic peptide vaccines against infectious agents, novel approaches and technologies employed in this process, including bioinformatics, genomics, proteomics, large-scale peptide synthesis, high-throughput screening methods, the use of transgenic animals for modelling human infections. An important role for the development and selection of efficient adjuvants for peptide immunogens is noted. Examples of synthetic peptide vaccine developments against three infectious diseases (malaria, hepatitis C, and foot-and-mouth disease) are given.
    Biochemistry (Moscow) Supplement Series B Biomedical Chemistry 12/2010; 57(1):14-30. DOI:10.1134/S1990750810040025