A large volume flat coil probe for oriented membrane proteins.

National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA.
Journal of Magnetic Resonance (Impact Factor: 2.32). 08/2006; 181(1):9-20. DOI: 10.1016/j.jmr.2006.03.008
Source: PubMed

ABSTRACT 15N detection of mechanically aligned membrane proteins benefits from large sample volumes that compensate for the low sensitivity of the observe nuclei, dilute sample preparation, and for the poor filling factor arising from the presence of alignment plates. Use of larger multi-tuned solenoids, however, is limited by wavelength effects that lead to inhomogeneous RF fields across the sample, complicating cross-polarization experiments. We describe a 600 MHz 15N-1H solid-state NMR probe with large (580 mm3) RF solenoid for high-power, multi-pulse sequence experiments, such as polarization inversion spin exchange at the magic angle (PISEMA). In order to provide efficient detection for 15N, a 4-turn solenoidal sample coil is used that exceeds 0.27 lambda at the 600 MHz 1H resonance. A balanced tuning-matching circuit is employed to preserve RF homogeneity across the sample for adequate magnetization transfer from 1H to 15N. We describe a procedure for optimization of the shorted 1/4 lambda coaxial trap that allows for the sufficiently strong RF fields in both 1H and 15N channels to be achieved within the power limits of 300 W 1H and 1 kW 15N amplifiers. The 8 x 6 x 12 mm solenoid sustains simultaneous B1 irradiation of 100 kHz at 1H frequency and 51 kHz at 15N frequency for at least 5 ms with 265 and 700 W of input power in the respective channels. The probe functionality is demonstrated by 2D 15N-1H PISEMA spectroscopy for two applications at 600 MHz.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phospholamban (PLN) inhibits the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), thereby regulating cardiac diastole. In membranes, PLN assembles into homopentamers that in both the phosphorylated and nonphosphorylated states have been proposed to form ion-selective channels. Here, we determined the structure of the phosphorylated pentamer using a combination of solution and solid-state nuclear magnetic resonance methods. We found that the pinwheel architecture of the homopentamer is preserved upon phosphorylation, with each monomer having an L-shaped conformation. The TM domains form a hydrophobic pore approximately 24 Å long and 2 Å in diameter, which is inconsistent with canonical Ca(2+)-selective channels. Phosphorylation, however, enhances the conformational dynamics of the cytoplasmic region of PLN, causing partial unwinding of the amphipathic helix. We propose that PLN oligomers act as storage for active monomers, keeping SERCA function within a physiological window.
    Structure 10/2013; DOI:10.1016/j.str.2013.09.008
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid fibrils are structurally ordered aggregates of proteins whose formation is associated with many neurodegenerative and other diseases. For that reason, their high-resolution structures are of considerable interest and have been studied using a wide range of techniques, notably electron microscopy, X-ray diffraction, and magic angle spinning (MAS) NMR. Because of the excellent resolution in the spectra, MAS NMR is uniquely capable of delivering site-specific, atomic resolution information about all levels of amyloid structure: (1) the monomer, which packs into several (2) protofilaments that in turn associate to form a (3) fibril. Building upon our high-resolution structure of the monomer of an amyloid-forming peptide from transthyretin (TTR 105-115), we introduce single 1-13 C labeled amino acids at seven different sites in the peptide and measure intermolecular carbonyl-carbonyl distances with an accuracy of 0.11 A. Our results conclusively establish a parallel, in register, topology for the packing of this peptide into a -sheet and provide constraints essential for the determination of an atomic resolution structure of the fibril. Furthermore, the approach we employ, based on a combination of a double-quantum filtered variant of the DRAWS recoupling sequence and multispin numerical simulations in SPINEVOLUTION, is general and should be applicable to a wide range of systems.

Full-text (2 Sources)

Available from
Jun 6, 2014