Article

Dominant mutants of the Saccharomyces cerevisiae ASF1 histone chaperone bypass the need for CAF-1 in transcriptional silencing by altering histone and Sir protein recruitment.

Department of Biology Graduate Program, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA.
Genetics (Impact Factor: 4.87). 07/2006; 173(2):599-610. DOI: 10.1534/genetics.105.054783
Source: PubMed

ABSTRACT Transcriptional silencing involves the formation of specialized repressive chromatin structures. Previous studies have shown that the histone H3-H4 chaperone known as chromatin assembly factor 1 (CAF-1) contributes to transcriptional silencing in yeast, although the molecular basis for this was unknown. In this work we have identified mutations in the nonconserved C terminus of antisilencing function 1 (Asf1) that result in enhanced silencing of HMR and telomere-proximal reporters, overcoming the requirement for CAF-1 in transcriptional silencing. We show that CAF-1 mutants have a drastic reduction in DNA-bound histone H3 levels, resulting in reduced recruitment of Sir2 and Sir4 to the silent loci. C-terminal mutants of another histone H3-H4 chaperone Asf1 restore the H3 levels and Sir protein recruitment to the silent loci in CAF-1 mutants, probably as a consequence of the weakened interaction between these Asf1 mutants and histone H3. As such, these studies have identified the nature of the molecular defect in the silent chromatin structure that results from inactivation of the histone chaperone CAF-1.

0 Followers
 · 
30 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes.
    Nucleic Acids Research 12/2013; 42(5). DOI:10.1093/nar/gkt1267 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly conserved chromatin assembly factor 1 (CAF-1) is required for histone deposition onto newly synthesized DNA to maintain genome stability. This study shows that the fission yeast Pcf1, the large subunit in CAF-1, is crucial for maintaining checkpoint kinase Cds1. Chromatin recruitment of Cds1 is enhanced by Pcf1 overproduction but is attenuated by the Δpcf1 mutation. Mutation of acetylation sites in the histone H4 tail abrogates the chromatin recruitment of Pcf1, which resembles that of Cds1 as reported previously. The present results provide evidence that chromatin recruitment of Pcf1, moderated by Clr6-HDAC activity, is essential for inactivating Cds1.
    SpringerPlus 01/2014; 3:30. DOI:10.1186/2193-1801-3-30
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During DNA replication, nucleosomes are rapidly assembled on newly synthesized DNA to restore chromatin organization. Asf1, a key histone H3-H4 chaperone required for this process, is phosphorylated by Tousled-like kinases (TLKs). Here, we identify TLK phosphorylation sites by mass spectrometry and dissect how phosphorylation has an impact on human Asf1 function. The divergent C-terminal tail of Asf1a is phosphorylated at several sites, and this is required for timely progression through S phase. Consistent with this, biochemical analysis of wild-type and phospho-mimetic Asf1a shows that phosphorylation enhances binding to histones and the downstream chaperones CAF-1 and HIRA. Moreover, we find that TLK phosphorylation of Asf1a is induced in cells experiencing deficiency of new histones and that TLK interaction with Asf1a involves its histone-binding pocket. We thus propose that TLK signalling promotes histone supply in S phase by targeting histone-free Asf1 and stimulating its ability to shuttle histones to sites of chromatin assembly.
    Nature Communications 03/2014; 5:3394. DOI:10.1038/ncomms4394 · 10.74 Impact Factor

Preview

Download
0 Downloads
Available from