The semaphorins

Center for Basic Neuroscience, Department of Pharmacology, NA4,301/5323 Harry Hines Blvd, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Genome biology (Impact Factor: 10.47). 02/2006; 7(3):211. DOI: 10.1186/gb-2006-7-3-211
Source: PubMed

ABSTRACT Semaphorins are secreted, transmembrane, and GPI-linked proteins, defined by cysteine-rich semaphorin protein domains, that have important roles in a variety of tissues. Humans have 20 semaphorins, Drosophila has five, and two are known from DNA viruses; semaphorins are also found in nematodes and crustaceans but not in non-animals. They are grouped into eight classes on the basis of phylogenetic tree analyses and the presence of additional protein motifs. The expression of semaphorins has been described most fully in the nervous system, but they are also present in most, or perhaps all, other tissues. Functionally, semaphorins were initially characterized for their importance in the development of the nervous system and in axonal guidance. More recently, they have been found to be important for the formation and functioning of the cardiovascular, endocrine, gastrointestinal, hepatic, immune, musculoskeletal, renal, reproductive, and respiratory systems. A common theme in the mechanisms of semaphorin function is that they alter the cytoskeleton and the organization of actin filaments and the microtubule network. These effects occur primarily through binding of semaphorins to their receptors, although transmembrane semaphorins also serve as receptors themselves. The best characterized receptors for mediating semaphorin signaling are members of the neuropilin and plexin families of transmembrane proteins. Plexins, in particular, are thought to control many of the functional effects of semaphorins; the molecular mechanisms of semaphorin signaling are still poorly understood, however. Given the importance of semaphorins in a wide range of functions, including neural connectivity, angiogenesis, immunoregulation, and cancer, much remains to be learned about these proteins and their roles in pathology and human disease.

Download full-text


Available from: Umar Yazdani, Feb 19, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metalloproteases regulate a vast array of critical cellular processes such as proliferation, migration, repair, and invasion/metastasis. In so doing, metalloproteases have been shown to play key roles in the pathogenesis of multiple disorders including arteriosclerosis, arthritis, cancer metastasis, and ischemic brain injury. Therefore, much work has focused on developing metalloprotease inhibitors to provide a potential therapeutic benefit against the progression of these and other diseases. In order to produce a more potent inhibitor of metalloproteases, we synthesized multivalent displays of a metalloprotease inhibitor derived from the ring-opening metathesis polymerization (ROMP). Specifically, multivalent ligands of a broad-spectrum metalloprotease inhibitor, TAPI-2, were generated upon conjugation of the amine-bearing inhibitor with the ROMP-derived N-hydroxysuccinimide ester polymer. By monitoring the metalloprotease dependent cleavage of the transmembrane protein Semaphorin4D (Sema4D), we demonstrated an enhancement of inhibition by multivalent TAPI-2 compared to monovalent TAPI-2. To further optimize the potency of the multivalent inhibitor, we systematically varied the polymer length and inhibitor ligand density (mole fraction, χ). We observed that while ligand density plays a modest role in the potency of inhibition caused by the multivalent TAPI-2 display, the length of the polymer produces a much greater effect on inhibitor potency, with the shortest polymer achieving the greatest level of inhibition. These findings validate the use of multivalent display to enhance the potency of metalloprotease inhibitors and further, suggest this may be a useful approach to enhance potency of other small molecule towards their targets.
    Bioorganic & medicinal chemistry letters 02/2014; 24(8). DOI:10.1016/j.bmcl.2014.02.007 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plexins are the primary receptors of semaphorins, and participate in the majority of intracellular pathways triggered by semaphorins, including the regulation of cell adhesion and the motility of numerous cell types. Recently, several studies have reported that plexins can significantly affect different aspects of cancer cell biology, and the aberrant expression of plexins has been observed in a wide variety of tumor types. However, the expression and role of plexin-B3 in hepatocellular carcinoma (HCC) is yet to be investigated. In the present study, plexin-B3 expression was measured in 14 paired HCC samples and the corresponding adjacent non-cancerous tissue by quantitative polymerase chain reaction and western blot analysis. The results indicated that the mRNA and protein expression levels of plexin-B3 were downregulated in HCC samples when compared with the corresponding adjacent non-cancerous tissue. In order to elucidate the correlation between clinicopathological data and the expression of plexin-B3 in patients with HCC, 84 HCC archived specimens were analyzed by immunohistochemistry (IHC). The IHC results revealed that the protein expression level of plexin-B3 was lower in the HCC samples compared with the corresponding adjacent non-cancerous tissue, and plexin-B3 underexpression was correlated with the patient gender and tumor size. In conclusion, these results indicated that loss of plexin-B3 in HCC may be of predictive value for the occurrence and progression of HCC. Thus, plexin-B3 may be a promising biomarker for the diagnosis and treatment of tumors in the future.
    Experimental and therapeutic medicine 04/2015; 9(4):1247-1252. DOI:10.3892/etm.2015.2243 · 0.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ultraprecise wiring of neurons banks on the instructions provided by guidance cue proteins that steer them to their appropriate target tissue during neuronal development. Semaphorins are one such family of proteins. Semaphorins are known to play major physiological roles during the development of various organs including nervous system, cardiovascular, and immune systems. Their role in different pathologies including cancer remains an intense area of investigation. This review focuses on a novel member of this family of proteins, semaphorin 5A, which is much less explored in comparison to its other affiliates. Recent reports suggest that semaphorins play important roles in the pathology of cancer by affecting angiogenesis, tumor growth and metastasis. We will firstly give a general overview of the semaphorin family and its receptors. Next, we discuss their roles in cellular movements and how that makes them a connecting link between nervous system and cancer. Finally, we focus our discussion on semaphorin 5A to summarize the prevailing knowledge for this molecule in developmental biology and carcinogenesis.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 09/2014; 1846(2). DOI:10.1016/j.bbcan.2014.09.006 · 7.58 Impact Factor