Article

A multiplex assay with 52 single nucleotide polymorphisms for human identification.

Department of Forensic Genetics, Institute of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark.
Electrophoresis (Impact Factor: 3.16). 06/2006; 27(9):1713-24.
Source: PubMed

ABSTRACT A total of 52 SNPs reported to be polymorphic in European, Asian and African populations were selected. Of these, 42 were from the distal regions of each autosome (except chromosome 19). Nearly all selected SNPs were located at least 100 kb distant from known genes and commonly used STRs. We established a highly sensitive and reproducible SNP-typing method with amplification of all 52 DNA fragments in one PCR reaction followed by detection of the SNPs with two single base extension reactions analysed using CE. The amplicons ranged from 59 to 115 bp in length. Complete SNP profiles were obtained from 500 pg DNA. The 52 loci were efficiently amplified from degraded samples where previously only partial STR profiles had been obtained. A total of 700 individuals from Denmark, Greenland, Somalia, Turkey, China, Germany, Taiwan, Thailand and Japan were typed, and the allele frequencies estimated. All 52 SNPs were polymorphic in the three major population groups. The mean match probability was at least 5.0 x 10(-19) in the populations studied. Typical paternity indices ranged from 336 000 in Asians to 549 000 in Europeans. Details of the 52 SNP loci and population data generated in this work are freely available at http://www.snpforid.org.

0 Bookmarks
 · 
289 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ancestry informative markers (AIMs) can be useful to infer ancestry proportions of the donors of forensic evidence. The probability of success typing degraded samples, such as human skeletal remains, is strongly influenced by the DNA fragment lengths that can be amplified and the presence of PCR inhibitors. Several AIM panels are available amongst the many forensic marker sets developed for genotyping degraded DNA. Using a 46 AIM Insertion Deletion (Indel) multiplex, we analyzed human skeletal remains of post mortem time ranging from 35 to 60 years from four different continents (Sub-Saharan Africa, South and Central America, East Asia and Europe) to ascertain the genetic ancestry components. Samples belonging to non-admixed individuals could be assigned to their corresponding continental group. For the remaining samples with admixed ancestry, it was possible to estimate the proportion of co-ancestry components from the four reference population groups. The 46 AIM Indel set was informative enough to efficiently estimate the proportion of ancestry even in samples yielding partial profiles, a frequent occurrence when analyzing inhibited and/or degraded DNA extracts. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
    Forensic Science International: Genetics 12/2014; 16C:58-63. · 3.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inundation of evolutionary markers expedited in Human Genome Project and 1000 Genome Consortium has necessitated pruning of redundant and dependent variables. Various computational tools based on machine-learning and data-mining methods like feature selection/extraction have been proposed to escape the curse of dimensionality in large datasets. Incidentally, evolutionary studies, primarily based on sequentially evolved variations have remained un-facilitated by such advances till date. Here, we present a novel approach of recursive feature selection for hierarchical clustering of Y-chromosomal SNPs/haplogroups to select a minimal set of independent markers, sufficient to infer population structure as precisely as deduced by a larger number of evolutionary markers. To validate the applicability of our approach, we optimally designed MALDI-TOF mass spectrometry-based multiplex to accommodate independent Y-chromosomal markers in a single multiplex and genotyped two geographically distinct Indian populations. An analysis of 105 world-wide populations reflected that 15 independent variations/markers were optimal in defining population structure parameters, such as FST, molecular variance and correlation-based relationship. A subsequent addition of randomly selected markers had a negligible effect (close to zero, i.e. 1 × 10(-3)) on these parameters. The study proves efficient in tracing complex population structures and deriving relationships among world-wide populations in a cost-effective and expedient manner.
    Nucleic Acids Research 07/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The TruSeq™ Forensic Amplicon library preparation protocol, originally designed to attach sequencing adapters to chromatin-bound DNA for chromatin immunoprecipitation sequencing (TruSeq™ ChIP-Seq), was used here to attach adapters directly to amplicons containing markers of forensic interest. In this study, the TruSeq™ Forensic Amplicon library preparation protocol was used to detect 160 single nucleotide polymorphisms (SNPs), including human identification SNPs (iSNPs), ancestry, and phenotypic SNPs (apSNPs) in 12 reference samples. Results were compared with those generated by a second laboratory using the same technique, as well as to those generated by whole genome sequencing (WGS). The genotype calls made using the TruSeq™ Forensic Amplicon library preparation protocol were highly concordant. The protocol described herein represents an effective and relatively sensitive means of preparing amplified nuclear DNA for massively parallel sequencing (MPS).
    Deutsche Zeitschrift für die Gesamte Gerichtliche Medizin 11/2014; · 2.60 Impact Factor

Full-text (2 Sources)

Download
437 Downloads
Available from
May 23, 2014