Article

Adaptive islet-specific regulatory CD4 T cells control autoimmune diabetes and mediate the disappearance of pathogenic Th1 cells in vivo.

Department of Immunology, Sidney Kimmel Cancer Center, San Diego, CA 92131, USA.
The Journal of Immunology (Impact Factor: 5.36). 05/2006; 176(8):4730-9. DOI: 10.4049/jimmunol.176.8.4730
Source: PubMed

ABSTRACT Adaptive regulatory T cells that develop from naive CD4 cells in response to exposure to Ag can act as immunotherapeutic agents to control immune responses. We show that effectors generated from murine islet-specific CD4 cells by TCR stimulation with IL-2 and TGF-beta1 have potent suppressive activity. They prevent spontaneous development of type 1 diabetes in NOD mice and inhibit development of pancreatic infiltrates and disease onset orchestrated by Th1 effectors. These regulatory T cells do not require innate CD25+ regulatory cells for generation or function, nor do they share some characteristics typically associated with them, including expression of CD25. However, the adaptive population does acquire the X-linked forkhead/winged helix transcription factor, FoxP3, which is associated with regulatory T cell function and maintains expression in vivo. One mechanism by which they may inhibit Th1 cells is via FasL-dependent cytotoxicity, which occurs in vitro. In vivo, they eliminate Th1 cells in lymphoid tissues, where Fas/FasL interactions potentially play a role because Th1 cells persist when this pathway is blocked. The results suggest that adaptive regulatory CD4 cells may control diabetes in part by impairing the survival of islet-specific Th1 cells, and thereby inhibiting the localization and response of autoaggressive T cells in the pancreatic islets.

Download full-text

Full-text

Available from: Linda Bradley, Dec 05, 2014
0 Followers
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T cells (Treg) are pivotal suppressor elements in immune homeostasis with potential therapeutic applications in inflammatory and autoimmune disorders. Using Treg as vehicles for targeted immunomodulation, a short-lived Fas-ligand (FasL) chimeric protein (killer Treg) was found efficient in preventing the progression of autoimmune insulitis in NOD mice, and amelioration of chronic colitis and graft versus host disease. The main mechanisms of disease suppression by killer Treg are: a) in the acute phase induction of apoptosis in effector cells at the site of inflammation decreases the pathogenic burden, and b) persistent increase in FoxP3(+) Treg with variable CD25 co-expression induced by FasL sustains disease suppression over extended periods of time. Reduced sensitivity of Treg to receptor-mediated apoptosis under inflammatory conditions makes them optimal vehicles for targeted immunotherapy using apoptotic agents.
    Autoimmunity reviews 05/2013; DOI:10.1016/j.autrev.2013.04.005 · 7.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing β-cells in the pancreatic islets. There is an immediate need to restore both β-cell function and immune tolerance to control disease progression and ultimately cure T1D. Currently, there is no effective treatment strategy to restore glucose regulation in patients with T1D. FoxP3-expressing CD4(+) regulatory T cells (Tregs) are potential candidates to control autoimmunity because they play a central role in maintaining self-tolerance. However, deficiencies in either naturally occurring Tregs (nTregs) themselves and/or their ability to control pathogenic effector T cells have been associated with T1D. Here, we hypothesize that nTregs can be replaced by FoxP3(+) adaptive Tregs (aTregs), which are uniquely equipped to combat autoreactivity in T1D. Unlike nTregs, aTregs are stable and provide long-lived protection. In this review, we summarize the current understanding of aTregs and their potential for use as an immunological intervention to treat T1D.
    Journal of Molecular Cell Biology 11/2011; 4(1):38-47. DOI:10.1093/jmcb/mjr040 · 8.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foxp3+T regulatory cell (Treg) subsets play a crucial role in the maintenance of immune homeostasis against self-antigen. The lack or dysfunction of these cells is responsible for the pathogenesis and development of many autoimmune diseases. Therefore, manipulation of these cells may provide a novel therapeutic approach to treat autoimmune diseases and prevent allograft rejection during organ transplantation. In the article, we will provide current opinions concerning the classification, developmental and functional characterizations of Treg subsets. A particular emphasis will be focused on transforming cell growth factor beta (TGF-beta) and its role in the differentiation and development of induced regulatory T cells (iTregs) in the periphery. Moreover, the similarity and disparity of iTregs and naturally occurring, thymus-derived CD4+CD25+Foxp3+ regulatory T cells (nTregs) will also be discussed. While proinflammatory cytokine IL-6 can convert nTregs to IL-17-producing cells, peripheral Tregs induced by TGF-beta are resistant to this cytokine. This difference may affect the role of each in the adaptive immune response.
    International Journal of Clinical and Experimental Medicine 02/2008; 1(3):192-202. · 1.42 Impact Factor