Functional Imaging of Numerical Processing in Adults and 4-y-Old Children

Department of Psychological and Brain Sciences, Duke University, Durham, North Carolina, USA.
PLoS Biology (Impact Factor: 11.77). 06/2006; 4(5):e125. DOI: 10.1371/journal.pbio.0040125
Source: PubMed

ABSTRACT Adult humans, infants, pre-school children, and non-human animals appear to share a system of approximate numerical processing for non-symbolic stimuli such as arrays of dots or sequences of tones. Behavioral studies of adult humans implicate a link between these non-symbolic numerical abilities and symbolic numerical processing (e.g., similar distance effects in accuracy and reaction-time for arrays of dots and Arabic numerals). However, neuroimaging studies have remained inconclusive on the neural basis of this link. The intraparietal sulcus (IPS) is known to respond selectively to symbolic numerical stimuli such as Arabic numerals. Recent studies, however, have arrived at conflicting conclusions regarding the role of the IPS in processing non-symbolic, numerosity arrays in adulthood, and very little is known about the brain basis of numerical processing early in development. Addressing the question of whether there is an early-developing neural basis for abstract numerical processing is essential for understanding the cognitive origins of our uniquely human capacity for math and science. Using functional magnetic resonance imaging (fMRI) at 4-Tesla and an event-related fMRI adaptation paradigm, we found that adults showed a greater IPS response to visual arrays that deviated from standard stimuli in their number of elements, than to stimuli that deviated in local element shape. These results support previous claims that there is a neurophysiological link between non-symbolic and symbolic numerical processing in adulthood. In parallel, we tested 4-y-old children with the same fMRI adaptation paradigm as adults to determine whether the neural locus of non-symbolic numerical activity in adults shows continuity in function over development. We found that the IPS responded to numerical deviants similarly in 4-y-old children and adults. To our knowledge, this is the first evidence that the neural locus of adult numerical cognition takes form early in development, prior to sophisticated symbolic numerical experience. More broadly, this is also, to our knowledge, the first cognitive fMRI study to test healthy children as young as 4 y, providing new insights into the neurophysiology of human cognitive development.


Available from: Elizabeth M Brannon, Jun 12, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This functional magnetic resonance imaging (fMRI) study systematically investigates whether there is a neurofunctional overlap of nonsymbolic numerical and spatial cognition in (intra)parietal regions in children and adults. The study also explores the association between finger use and (nonsymbolic) number processing across development. Twenty-four healthy individuals (12 children, 12 adults) were asked to make nonsymbolic numerical and spatial (experimental tasks) as well as color discriminations (control task). Using identical stimulus material across the three tasks disentangled nonsymbolic number representations from general attentional mechanisms, visual-spatial processing and response selection requirements. In both age groups, behavioral distance effects were obtained upon processing numerical (but not spatial and/or color) stimuli. Baseline imaging effects revealed age-dependent, partly overlapping activations of nonsymbolic numerical and spatial processing in the right posterior superior parietal lobe (PSPL) in adults only. Interestingly, regions more activated in children relative to adults were centred on bilateral supramarginal gyrus (SMG) and lateral portions of the anterior intraparietal sulcus (IPS), further extending to adjacent right post- and precentral gyrus, the latter of which has been reported to support grasping previously (Simon et al., 2002). Overall, our results are first evidence for an age-dependent neurofunctional link between areas supporting finger use and nonsymbolic number processing and furthermore, might be suggestive of a special role of fingers for the development of number magnitude representations and early arithmetic.
    Cortex 05/2008; 44(4):376-85. DOI:10.1016/j.cortex.2007.08.003 · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies showed that the processing of numerical information and spatial information such as physical size causes a mutual interference. The neuronal correlate of such interference was suggested to be in the parietal lobe. However, a previous study showed that such interference does not occur between numerical information and nonspatial dimensions such as luminance level (Pinel P, Piazza M, Le Bihan D, Dehaene S. 2004. Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron. 41:983-993). Here it is shown that numerical value and luminance level do cause a behavioral interference and that this interference modulates the activity in the parietal lobe. The current results support the idea that the parietal lobe might be equipped with neuronal substrates for magnitude processing even for nonspatial dimensions.
    Cerebral Cortex 03/2008; 18(2):337-43. DOI:10.1093/cercor/bhm058 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developmental dyscalculia (DD) is a specific learning disability affecting the normal acquisition of arithmetic skills. Current studies estimate that 3-6% of the school population is affected by DD. Genetic, neurobiological, and epidemiologic evidence indicates that dyscalculia is a brain-based disorder. Imaging studies suggest the involvement of parietal and prefrontal cortices in arithmetic tasks. The aim of the present study was to analyze if children with DD show structural differences in parietal, frontal, and cingulate areas compared to typically achieving children. Magnetic resonance imaging was obtained from 12 children with DD aged 9.3+/-0.2 years and 12 age-matched control children without any learning disabilities on a 1.5 T whole-body scanner. Voxel-based morphometry analysis with an optimization of spatial segmentation and normalization procedures was applied to compare the two groups in order to find differences in cerebral gray and white matter. Compared to controls, children with DD show significantly reduced gray matter volume in the right intraparietal sulcus (IPS), the anterior cingulum, the left inferior frontal gyrus, and the bilateral middle frontal gyri. White matter comparison demonstrates clusters with significantly less volume in the left frontal lobe and in the right parahippocampal gyrus in dyscalculic children. The decreased gray and white matter volumes in the frontoparietal network might be the neurological substrate of impaired arithmetic processing skills. The white matter volume decrease in parahippocampal areas may have influence on fact retrieval and spatial memory processing.
    NeuroImage 02/2008; 39(1):417-22. DOI:10.1016/j.neuroimage.2007.08.045 · 6.13 Impact Factor